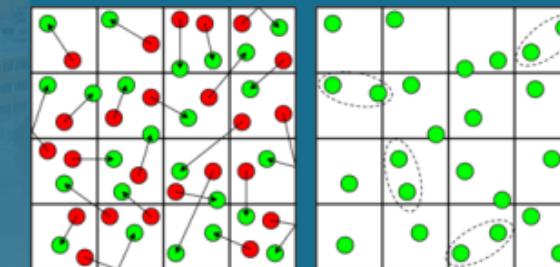
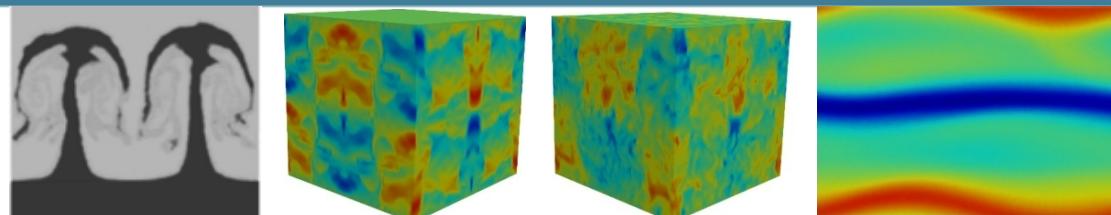


Sandia
National
Laboratories

The Navier-Stokes Equations Do Not Describe the Smallest Scales of Turbulence



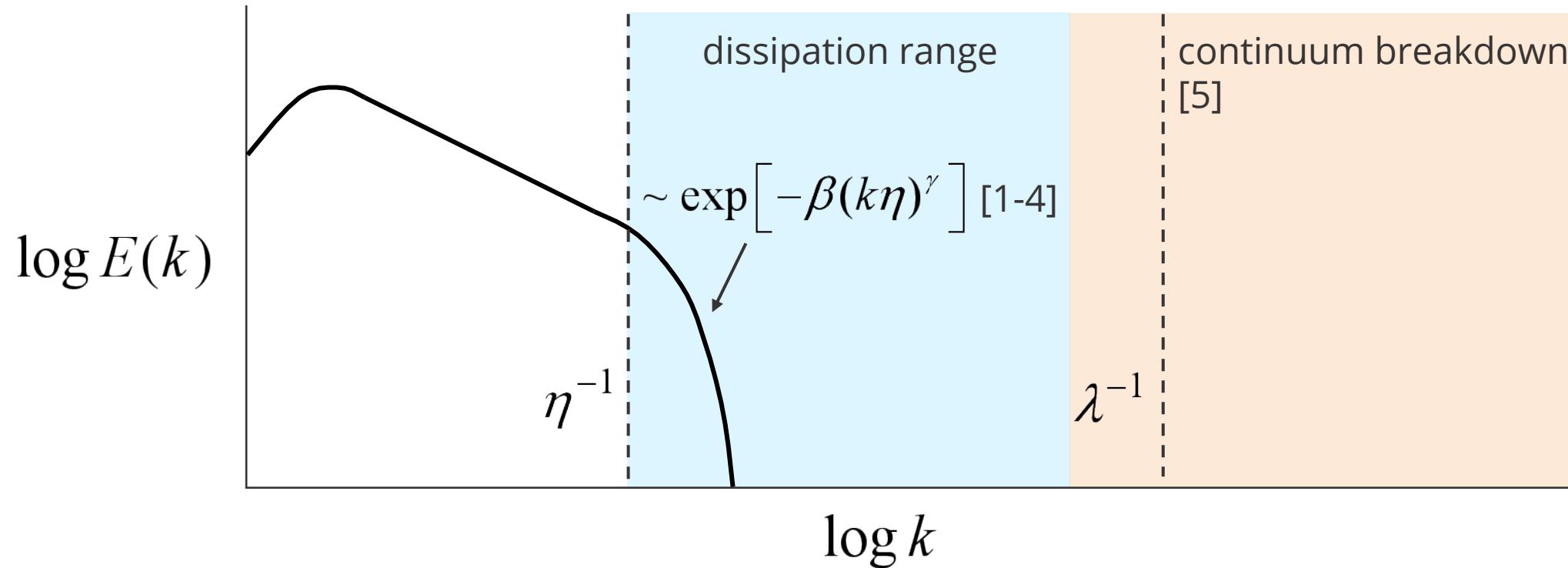
Ryan M. McMullen, John R. Torczynski, Michael A. Gallis
Engineering Sciences Center, Sandia National Laboratories,
Albuquerque, New Mexico

19th U.S. National Congress on Theoretical and Applied Mechanics

June 19-24, 2022; Austin, Texas USA

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

The turbulent energy spectrum according to Navier-Stokes



[1] Chen et al., Phys. Rev. Lett. (1993)

[2] Sirovich et al., Phys. Rev. Lett. (1994)

[3] Khurshid et al., Phys. Rev. Fluids (2018)

[4] Buaria & Sreenivasan, Phys. Rev. Fluids (2020)

[5] Bird, Clarendon Press (1994)

What about thermal fluctuations?

All finite systems exhibit random molecular fluctuations

Center-of-mass velocity u_{th} in volume l^3 :

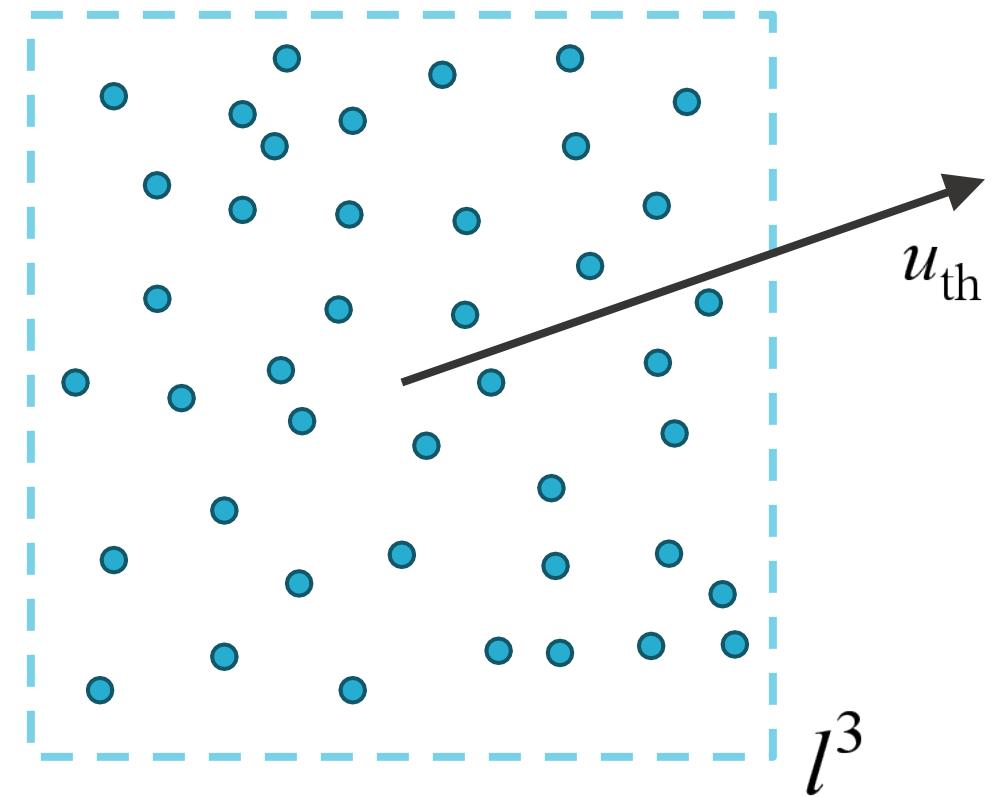
$$\langle u_{\text{th}} \rangle = 0, \quad \langle u_{\text{th}}^2 \rangle \sim \frac{k_B T}{\rho l^3}$$

Compare to kinetic energy in Kolmogorov-scale eddy [1]

$$\theta_\eta \equiv \frac{k_B T}{\rho u_\eta^2 \eta^3} \sim 10^{-9} - 10^{-6}$$

But $E(k)$ decays exponentially fast for $k\eta > 1$...

Thermal fluctuations may dominate dissipation range,
even when $k \ll \lambda^{-1}$ [1,2]



[1] Eyink et al., Phys. Rev. E (2022)

[2] Betchov, J. Fluid Mech. (1957)

Molecular-level simulations of turbulence

Dissipation range is extremely difficult to measure experimentally

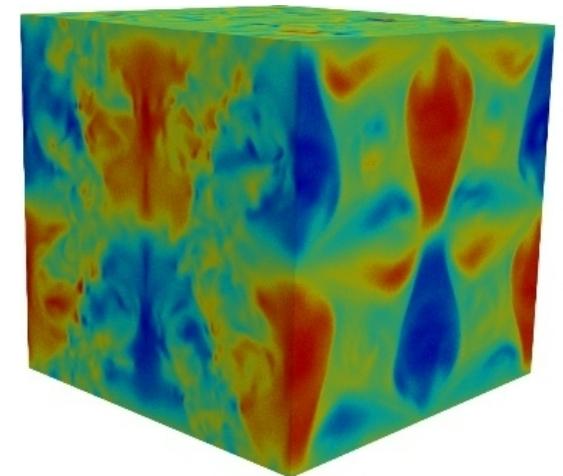
But can investigate with molecular-level simulations

Simulate Taylor-Green (TG) vortex flow [1] using DSMC

- $Re = \rho_0 VL / \mu_0 = 500, 1000, 1500$
- $Ma = V/a_0 = 0.3, 0.6, 0.9$
- $Kn = \lambda/L = 9.7 \times 10^{-4}$

Compare with compressible Navier-Stokes (NS) simulations

- Use Sandia's finite-volume code SPARC [2]



[1] Taylor & Green, Proc. R. Soc. Lond. A (1937)

[2] Howard et al., 23rd AIAA CFD (2017)

Direct simulation Monte Carlo (DSMC)

No PDEs solved – tracks very large numbers ($\sim 10^{12}$) of computational “molecules”

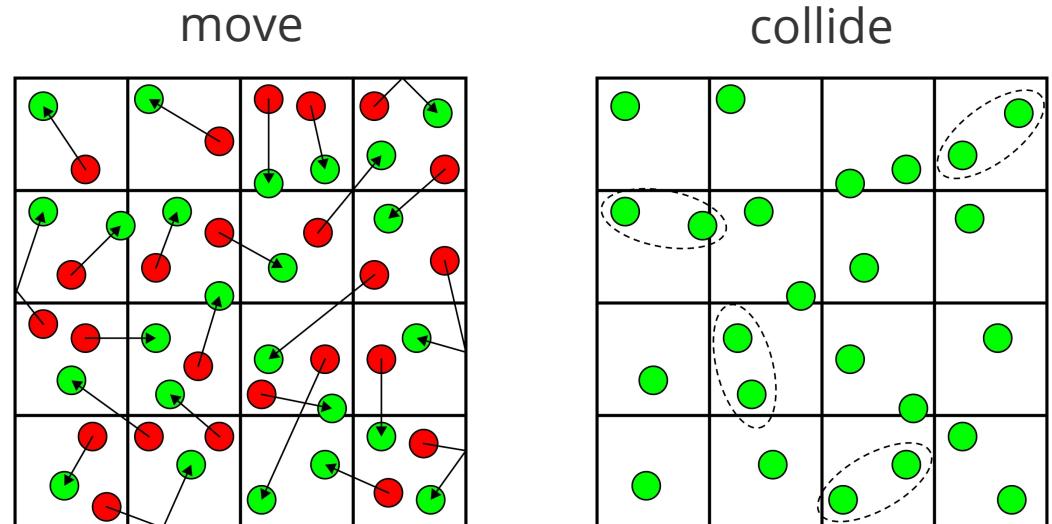
- Each represents $F \gg 1$ actual molecules
- Move ballistically, collide & reflect stochastically
- Flow quantities from averages over molecules in each cell

Inherently includes physics usually not in NS

- Thermal and chemical nonequilibrium
- Pressure and heat-flux tensor anisotropy
- Thermal fluctuations

Simulates gas flows very accurately

- Converges to solutions of the Boltzmann Equation [1]
- Reproduces Chapman-Enskog distribution [2]



$$\frac{d\mathbf{x}_i}{dt} = \mathbf{v}_i$$

$$\frac{d(m_i \mathbf{v}_i)}{dt} = \mathbf{F}(\mathbf{x}_i) + \mathbf{C}(\mathbf{v}_i)$$

[1] Wagner, J. Stat. Phys. (1992)

[2] Gallis et al., Phys. Rev. E (2004)

SPARTA: An exascale DSMC code

SPARTA: Stochastic PArallel Rarefied-gas Time-accurate Analyzer

Implementation is similar to Molecular Dynamics (MD)

- Single-processor to massively-parallel platforms
- Load balancing, in-situ visualization, on-the-fly FFTs, adaptive grid

Extremely complicated geometries can be treated

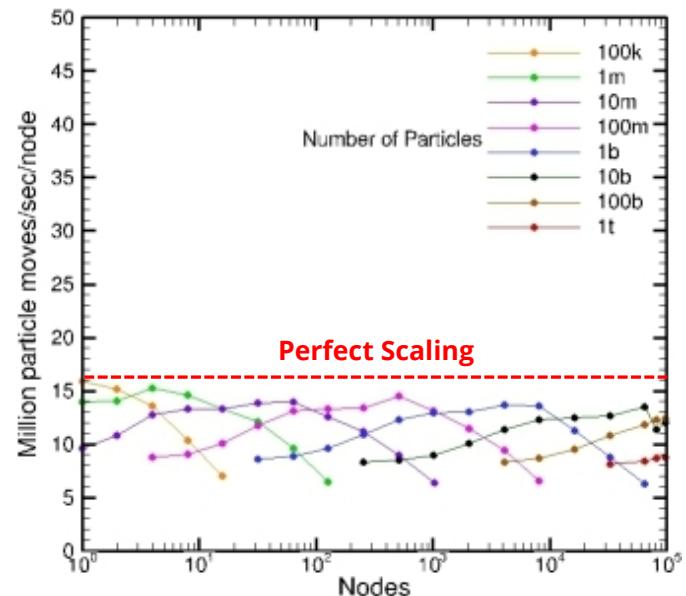
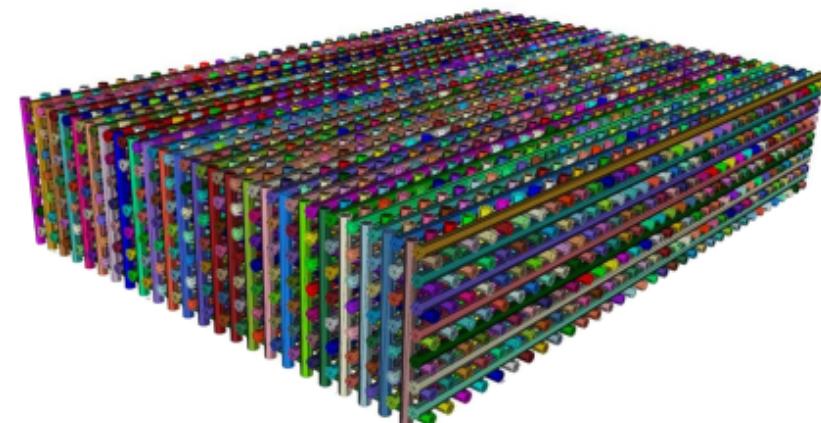
- Domain can be 2D, axisymmetric, 3D
- Gas molecules use hierarchical Cartesian “ijk” grid
- Body surfaces represented by triangular elements which cut gas grid cells

Developed with next-generation architectures in mind

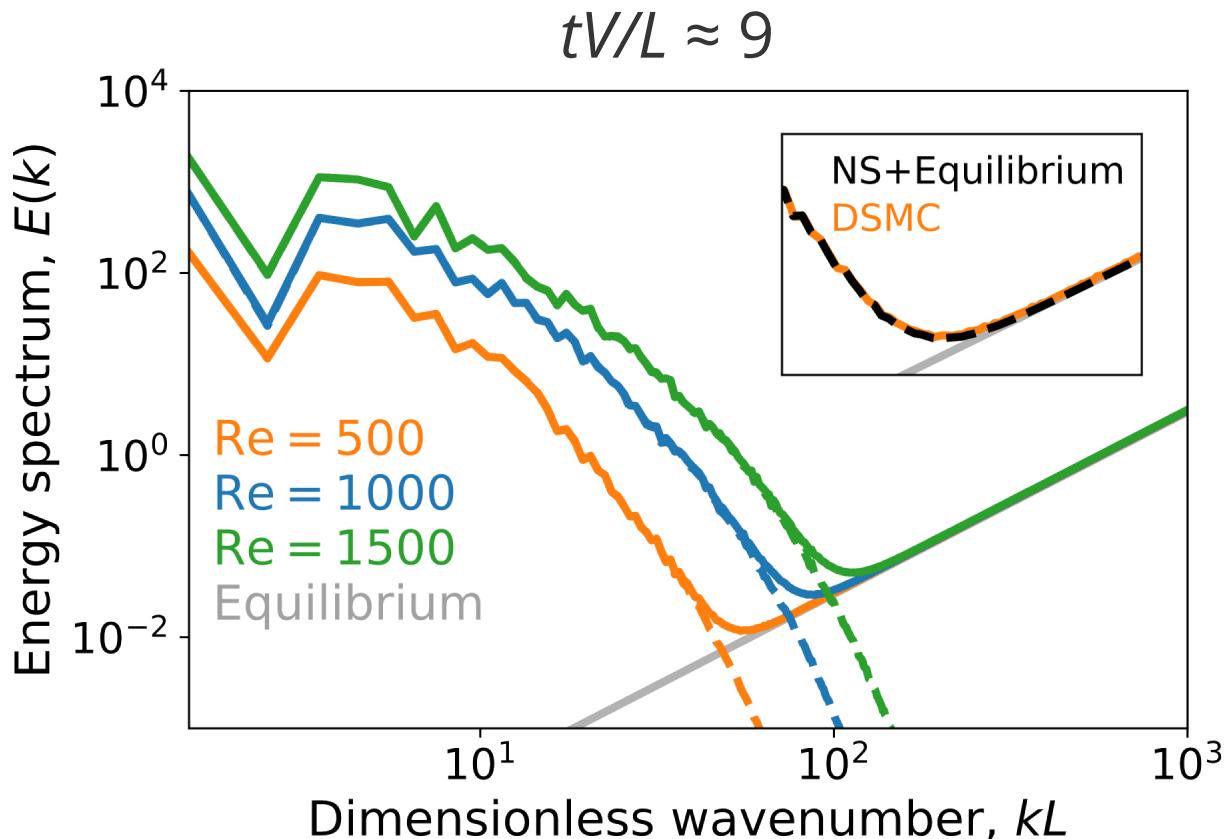
- Write application kernels only once
- Efficient on many platforms: GPU, manycore, heterogeneous, ...

Open-source code available: <http://sparta.sandia.gov>

- 10,000+ downloads, 100+ verified users worldwide
- Collaborators: ORNL, LANL, ANL, LBNL, NASA, Purdue, UIUC, ESA



DSMC and NS spectra comparison



Excellent agreement for low k

DSMC spectra show large- k departure from NS due to thermal fluctuations

NS equations are inaccurate for $k > k_c$

Fluctuation variance overestimated in DSMC when $F > 1$

- These simulations use $F = 16,154$
- Want to determine the k_c that would be observed in a physical gas

$$\text{Equilibrium spectrum: } E(k) = F \frac{3k_B T}{4\pi^2 \rho} k^2$$

Equilibrium DSMC spectra

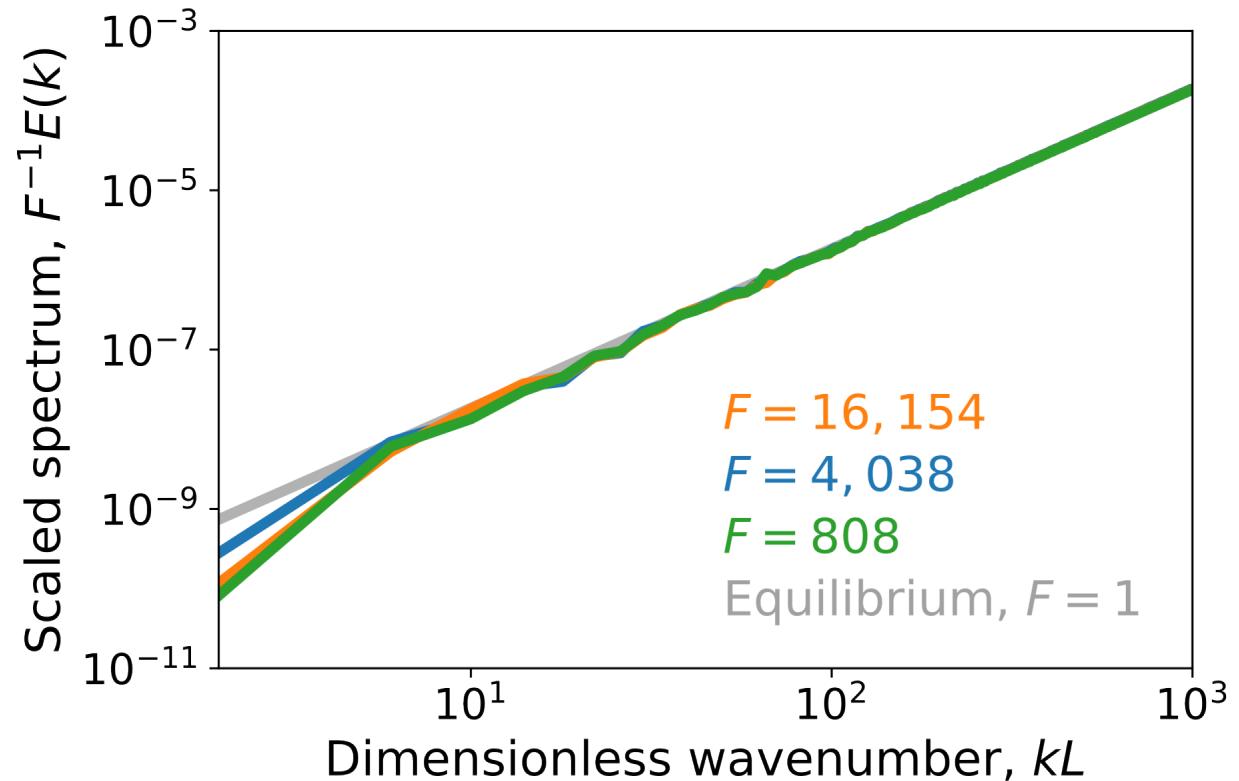
Equilibrium spectrum:

$$E(k) = F \frac{3k_B T}{4\pi^2 \rho} k^2$$

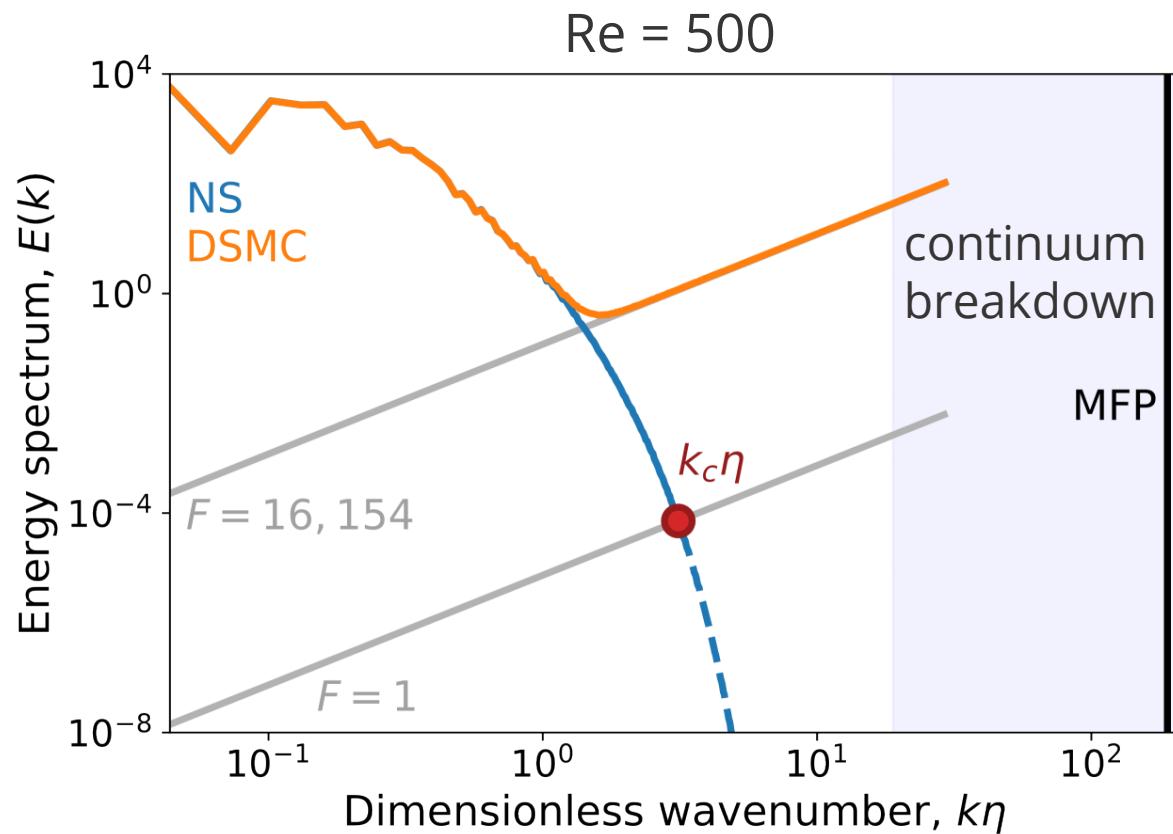
DSMC spectra obey simulation ratio scaling

$F = 1$ corresponds to physical gas

- Use this to determine k_c



Crossover wavenumber



$$k_c\eta \approx 3.1$$

Thermal fluctuations dominate almost the entire dissipation range

- Similar for other Re
- Agrees with fluctuating hydrodynamics predictions for liquids [1]

$$l_c / \lambda \approx 61$$

Crossover scale is in a regime where NS equations widely believed to be valid [2]

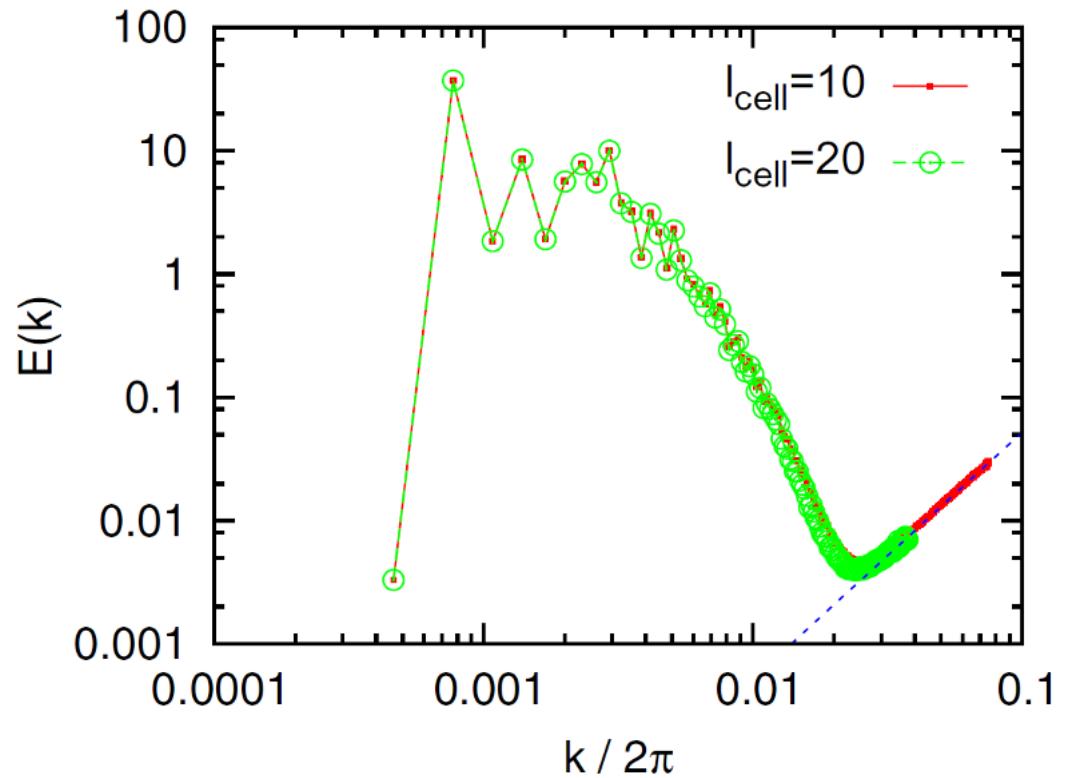
[1] Bell et al., J. Fluid Mech. (2022)

[2] Bird, Clarendon Press (1994)

Molecular-dynamics simulations

Komatsu et al. [1] observed thermal fluctuations in MD simulations of TG flow

- Crossover at $k\eta \approx 1$
- But $\eta \approx 7$ molecular diameters ($\sim \lambda$)
 - $\theta_\eta \approx 0.5$
 - Present DSMC: $\theta_\eta \sim 10^{-6}$
- Concluded observable only due to microscopic system size



Thermal-fluctuation effects on other statistics

Equilibrium spectrum for $k > k_c$ suggests simple model for velocity

$$u_i = u_i^{\text{NS}} + u_i^{\text{th}},$$

$$u_i^{\text{th}} \sim N \left(0, Fk_B T / \rho l^3 \right)$$

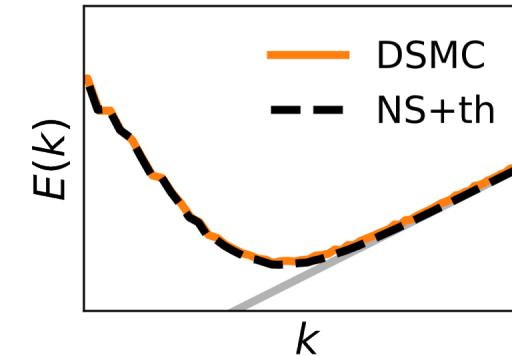
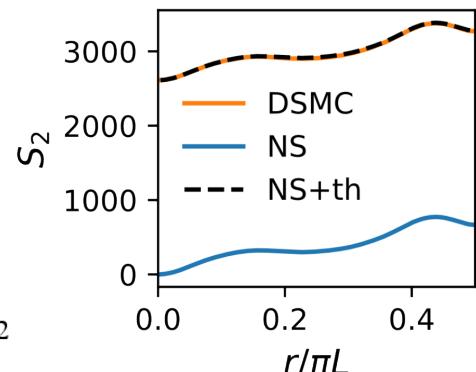
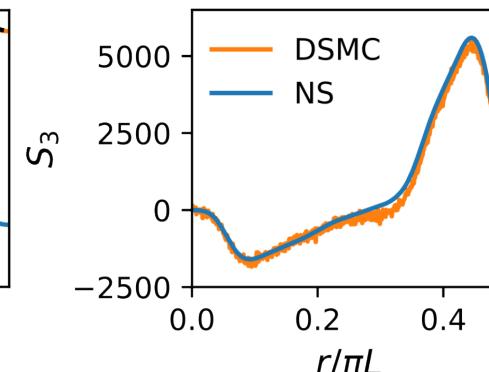
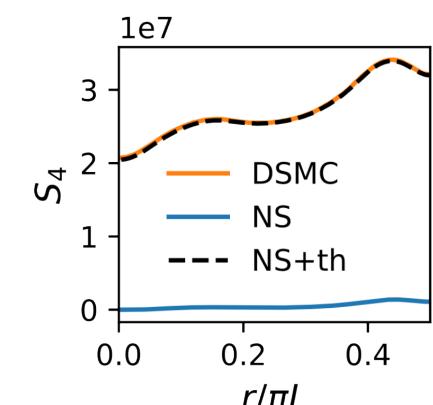
Use to look at other statistics, e.g. longitudinal structure functions

$$S_n(r) = \langle [u(x+r) - u(x)]^n \rangle$$

$$S_2(r) = S_2^{\text{NS}}(r) + 2 \frac{Fk_B T}{\rho l^3},$$

$$S_3(r) = S_3^{\text{NS}}(r),$$

$$S_4(r) = S_4^{\text{NS}}(r) + 12 \frac{Fk_B T}{\rho l^3} S_2^{\text{NS}}(r) + 12 \left(\frac{Fk_B T}{\rho l^3} \right)^2$$



Structure function predictions for $F = 1$

Separate into NS and thermal correction:

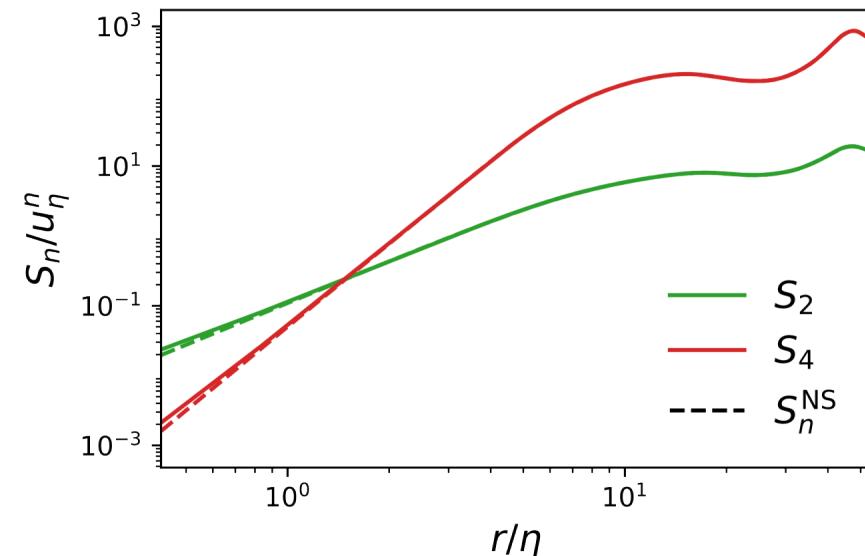
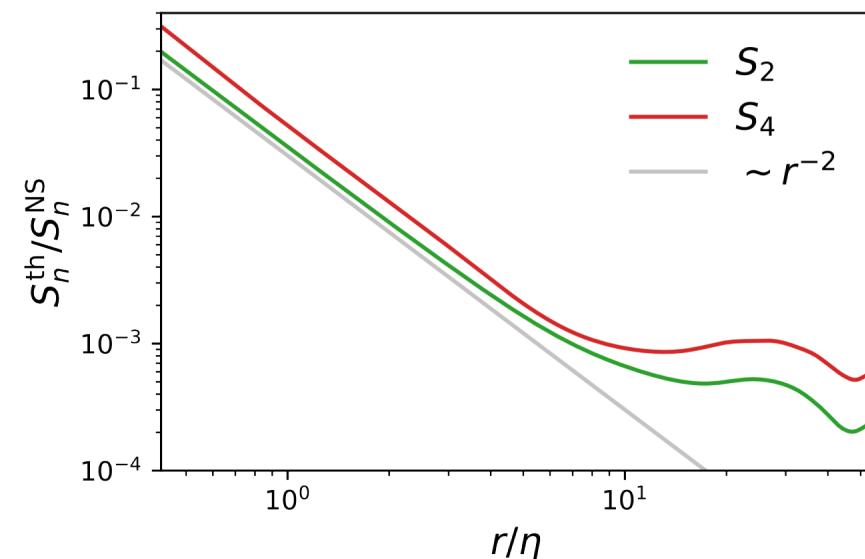
$$S_2(r) = S_2^{\text{NS}}(r) + 2 \underbrace{\frac{k_B T}{\rho l^3}}_{S_2^{\text{th}}}$$

$$S_4(r) = S_4^{\text{NS}}(r) + 12 \underbrace{\frac{k_B T}{\rho l^3} S_2^{\text{NS}}(r) + 12 \left(\frac{k_B T}{\rho l^3} \right)^2}_{S_4^{\text{th}}}$$

Significant deviations ($\sim 5\%$) at $r = \eta$

- Grow like r^{-2}
- Thermal fluctuations dominate for separations smaller than

$$\frac{r^*}{\eta} \sim \theta_\eta^{1/2} \left(\frac{l}{\eta} \right)^{-3/2}$$



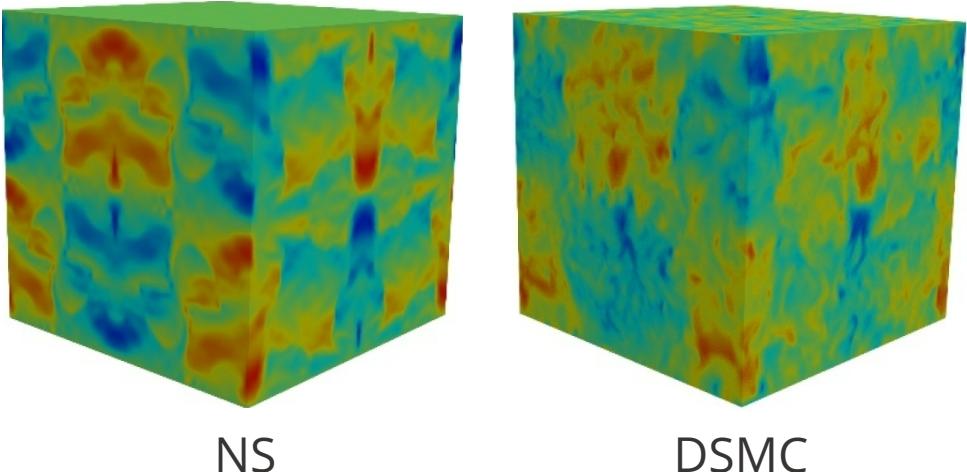
Thermal-fluctuation effects on larger scales

No observed effects on global or large-scale statistics

However, they do influence realizations of larger scales [1,2]

Implications for predictability?

- Maximal Lyapunov exponent? [1,3,4]
 - $\delta(t) \sim \exp(\text{Re}^\beta t)$
- Superfast amplification? [5]
 - $\delta(t) \sim \exp(C \text{Re}^{1/2} t^{1/2} + C_1 t)$
- Spontaneous stochasticity? [6-9]
 - “Intrinsic randomness”



NS

DSMC

[1] Ruelle, Phys. Lett. A (1979)

[2] Gallis et al. Phys. Rev. Fluids (2021)

[3] Boffetta & Musacchio, Phys. Rev. Lett. (2017)

[4] Berera & Ho, Phys. Rev. Lett. (2018)

[5] Li et al., J. Fluid Mech. (2020)

[6] Lorenz, Tellus (1969)

[7] Kupiainen, Ann. Henri Poincaré (2003)

[8] Eyink & Bandak, Phys. Rev. Res. (2020)

[9] Thalabard et al., Comms. Phys. (2020)

Summary

R. M. McMullen, M. C. Krygier, J. R. Torczynski, and M. A. Gallis,
 Phys. Rev. Lett. **128**, 114501 (2022).

DSMC shows that the Navier-Stokes equations are not accurate in the dissipation range for turbulence in gases

$$k_c \eta = O(1),$$

$$l_c / \lambda \approx 1$$

Agrees with previous estimates [1,2] fluctuating hydrodynamics simulations of liquids [3], and microscopic MD simulations [4]

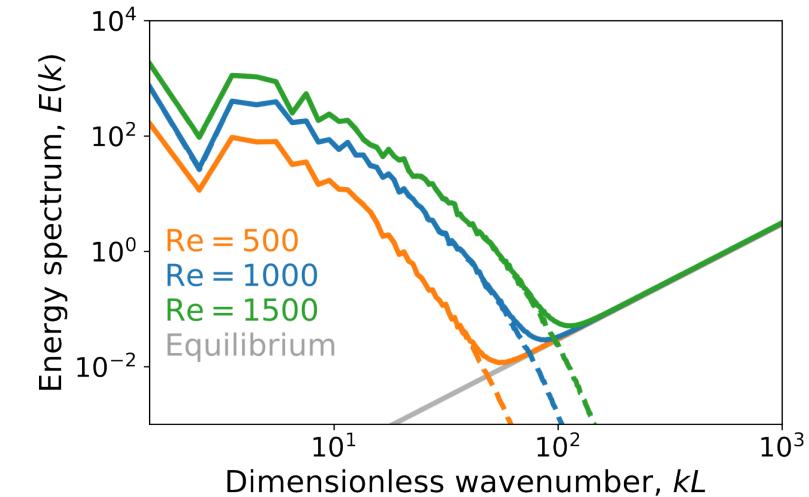
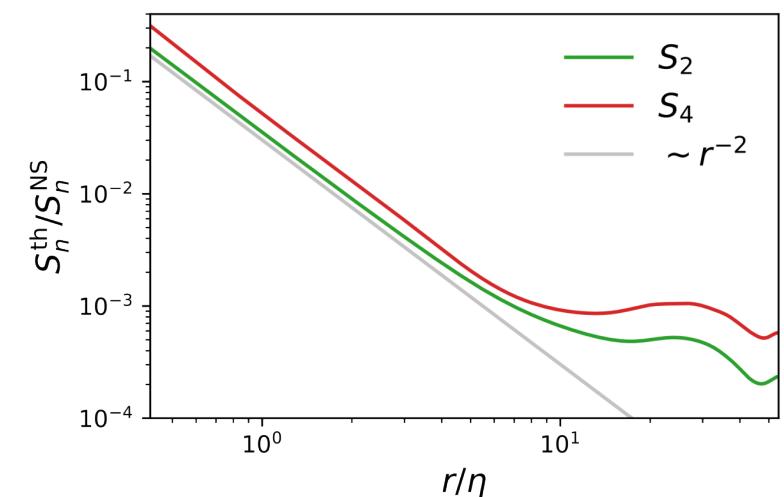
Simple model for velocity field reproduces DSMC structure functions

- Predicts significant modifications below Kolmogorov scale

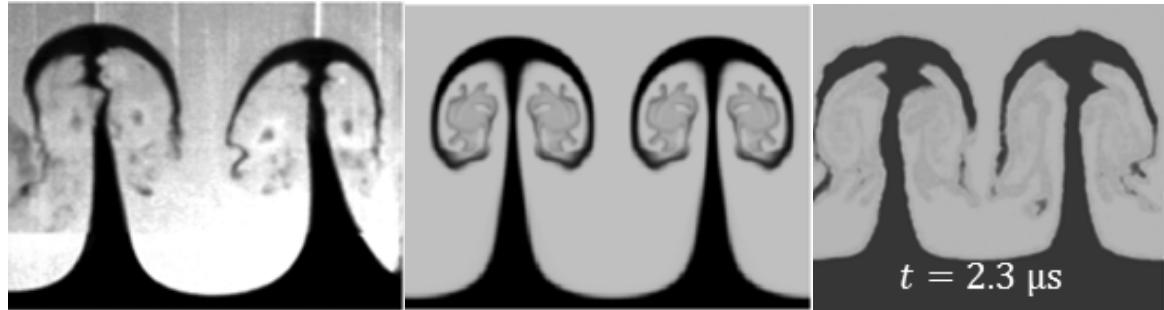
What role do thermal fluctuations play in predictability?

[1] Betchov, J. Fluid Mech. (1957)
 [2] Eyink et al., Phys. Rev. E (2022)

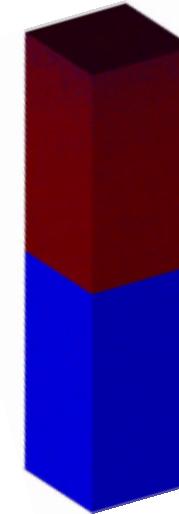
[3] Bell et al., J. Fluid Mech (2022)
 [4] Komatsu et al., Int. J. Mod. Phys. C (2014)



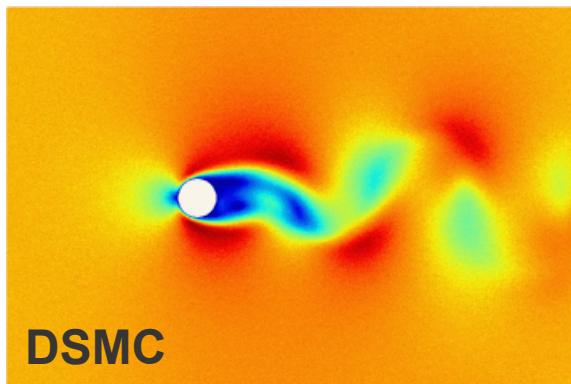
DSMC simulations of other near-continuum flows



Richtmyer-Meshkov

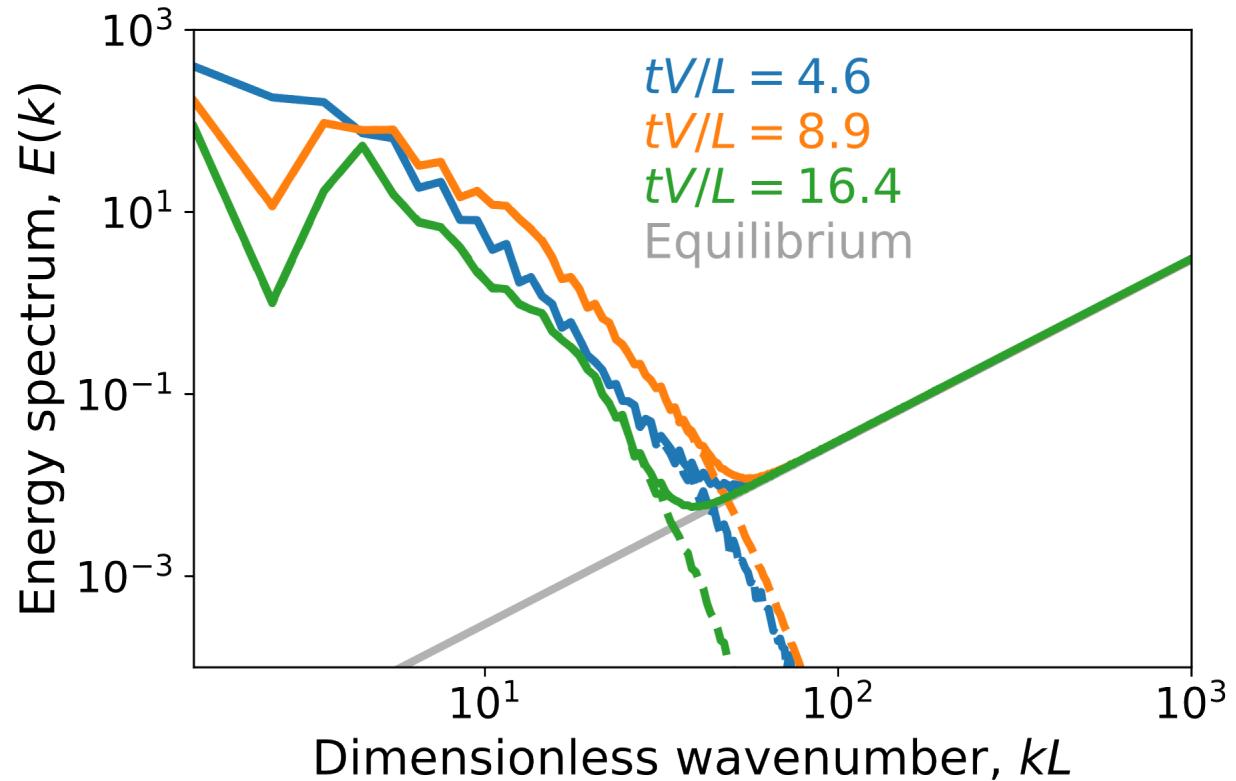


Rayleigh-Taylor



Vortex shedding with slip

Re = 500 spectra at different times

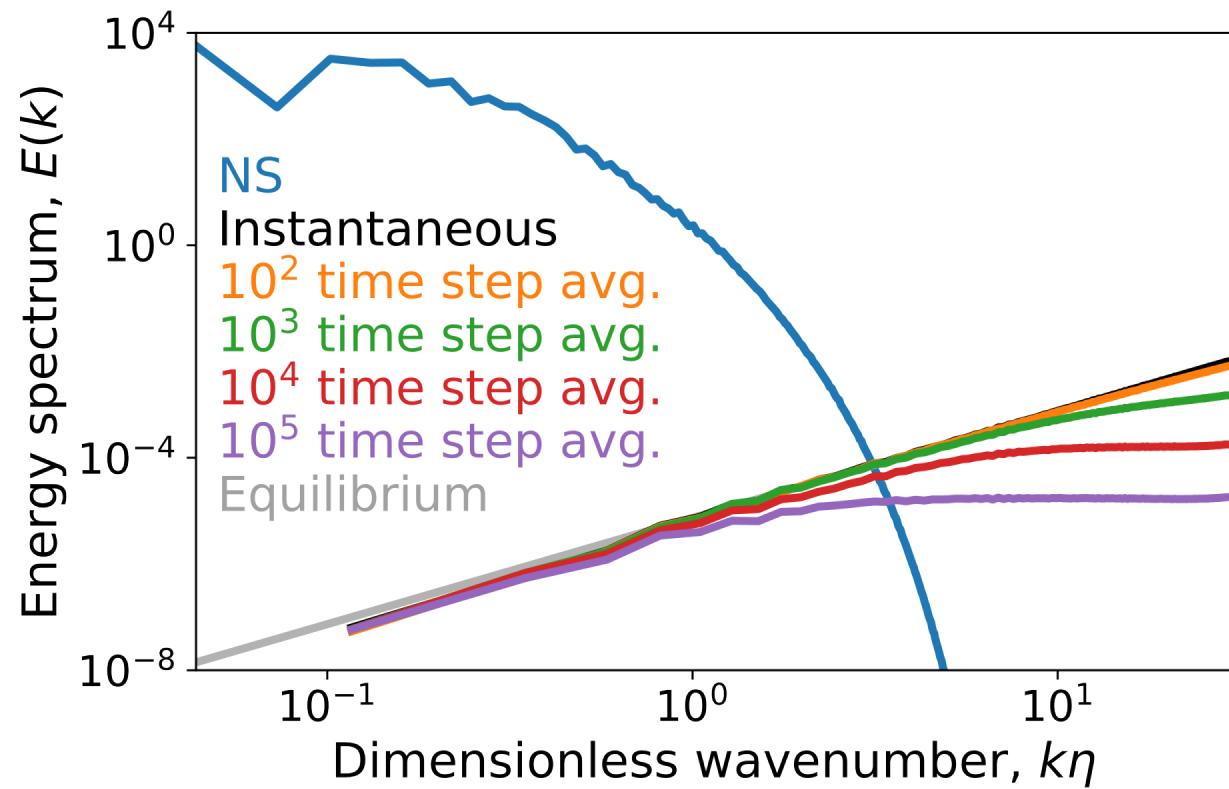


Time averaging

Averaging is common practice to reduce statistical noise in DSMC

Here, 10^5 timesteps corresponds to $\approx 0.5\tau_\eta$

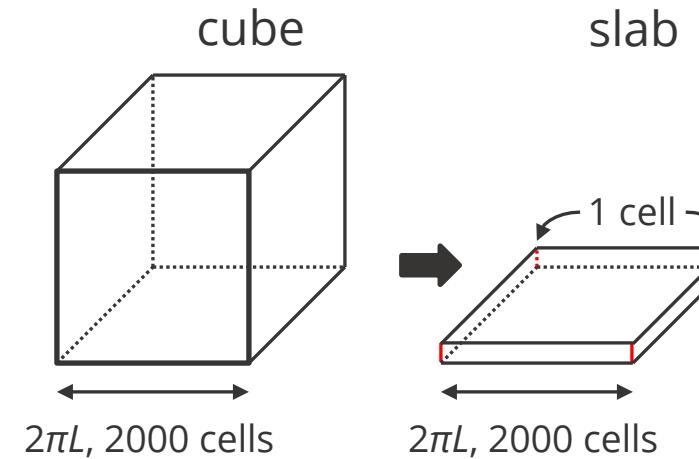
Only changes crossover scale by $\approx 10\%$



Viscosity determination for DSMC

Cells are large, so transport is enhanced

- Viscosity is 36% larger than molecular value
- Near-neighbor collisions reduce mean collision separation

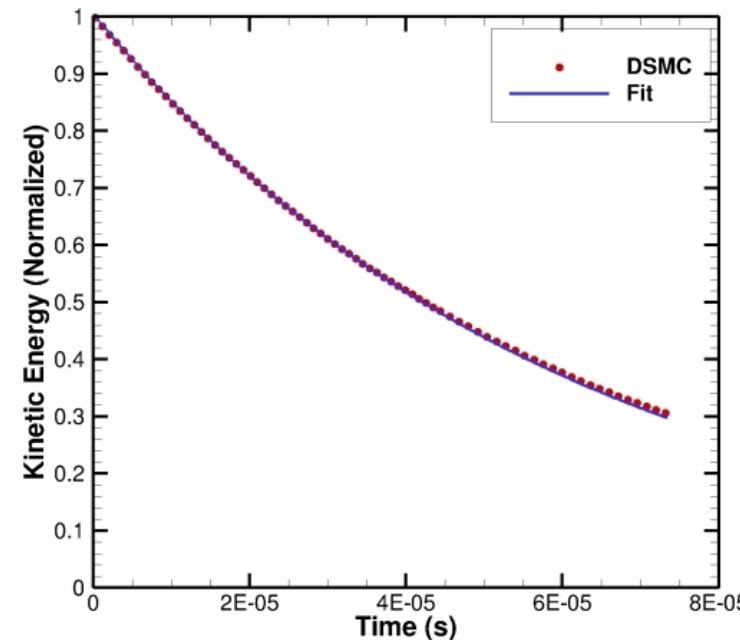


Simulate some other flow to find viscosity

- Use a similar but much easier flow
- 2D TG vortex energy decay:

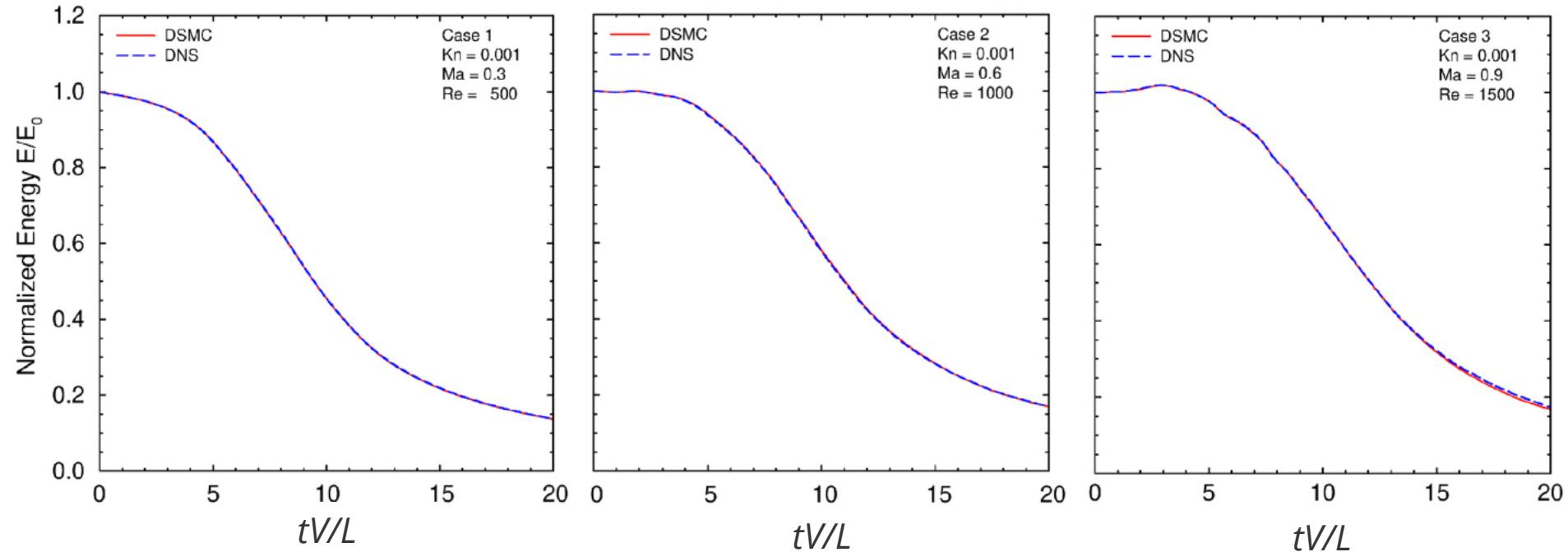
$$E = E_0 \exp(-4\mu_{\text{eff}} t / \rho_0 L^2)$$

Use effective viscosity in NS simulations for comparison



Kinetic energy decay

Excellent agreement between MGD and NS! *



*DSMC data are time-averaged before computing energy