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• Fuel & engine research
• Energy storage and conversion
• Turbulence/chemistry interactions
• Experimental diagnostics
• Chemical kinetics
• Gas-phase chemical physics
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Autoignition – a chemical feedback loop

Adapted from Merchant et al.
Comb. Flame, 162, 3658 (2015)
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Fundamental Chemical Physics 
challenges
• Molecular structure-dependence
• Temperature dependence
• Pressure-dependence and non-

Boltzmann reactions

Modeling challenges
• 100s of species/1000s of reactions
• uncertain rate and energy transfer 

parameters

Experimental challenges
• Short-lived, reactive intermediates
• No prior characterization
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SVUV Photoionization mass spectrometry

 Universal detection*
 Multiplexed, high-throughput

• Orthogonal acceleration TOF-MS
• Quasi-CW ionization, duty cycle ~1

 Isomer-level selectivity*
• Soft VUV ionization
• Distinct PI spectra

 Quantitative*
• Large database of abs. PICS is 

available

reactor (flame, JSR)

quartz cone

skimmer

Cool et al., ALS, circa 2005 - present

 Other SVUV-PIMS setups: NSRL, Soleil, others?
 Also: shock tubes, plug flow reactors, catalytic reactors
 Advanced photoionization methods (PEPICO, false coincidence rejection)
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Sandia high-pressure PIMS endstation

Ivan Antonov

J. Phys. Chem. A, 123 
(2019), 10804

pump

40 kHz pulsed 
TOF mass spec

pumppump

pumpoptical
access

~ 10-4 
Torr

~ 10-5 
Torr

~ 10-6 
Torr

MCP

photolysis
laser

high-P Laser Photolysis Reactor (LPR)
• Homogeneous, “wall-free” reactions
• up to P = 100 bar, T = 900 K

to Reflectron TOF

-1V -40V
0V

0V
-6V

Custom photoionization mass spec
• High-density ionization = high sensitivity 

(including reactive molecules, e.g. radicals)
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Laser flash photolysis/time-resolved SVUV-PIMS

time250 ms

photolysis
4 Hz

12500 TOF
sweeps

TOF-MS
50 kHz

TOF

20 μs

reaction time reaction timepump out pumpout

 Real-time speciation data
• Helps unravel sequential kinetics
• A new dimension for model targets

 Works at T << autoignition
 Enables detection of radicals, 

other short-lived intermediates

E

time- and E-resolved mass spectrum
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PICS

ᵄ� ᵅ�(ᵃ� ,ᵆ� ) = ᵄ� ∙ ᵱ� ᵅ�(ᵆ� ) ∙ ᵰ� ᵅ�(ᵃ� ) ∙ ᵃ� ᵄ�ᵄ�ᵄ� (ᵃ� ) ∙ ᵄ� ᵆ�
ionization probability

mole 
fraction

Sensitivity loss of MBMS-PIMS as a function of P

sampling 
flow

1e-17 cm2

VUV 
fluence

“overlap” 
factor

1e15 cm-2s-1 1e-9 s

~1e-11

Cmin = 1010 cm-3

S/N = 10 on 
ms timescale

10 Torr, 600 K 1000 Torr, 600 K
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High-density ionization – a new mass spectrometer design

x

z y
VUV
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 Pro: high ionization efficiency (ρ ~ 1/x2)
 Con #1: ion beam divergence  Con #2: ion-molecule collisions

collisions 
at high ρ

ion

neutral

collisions at low ρ due 
to ion acceleration

U1

U2

TOF

Δz, ΔVz
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1. Ionization
2. Nested apertures 
(4mm x 40mm)
3. ES quadrupole 
focusing doublet
4. Pulsed acceleration

4.reactor

-1V -40V

2.

0V

1.

0V

3.

-6V

1.

2.

4.

40 mm

position

4 mm

y
z

2 km/s

4 km/s

velocity

 Pcollision ~20%
 Pdetection ~1e-9
 m/Δm ~1600

High-density ionization – the “digital twin”
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Sandia high-pressure PIMS – V2.0
pump

pumppump

pumpoptical
access

~ 10-4 
Torr

~ 10-5 
Torr

~ 10-6 
Torr

Installed at beamline 9.0.2

 Mobile endstation (SNL or ALS)
 m/Δm ~1600
 100x sensitivity over version 1.0
 P up to 50 bar, T up to 900 K
 “Wall-free”, sensitive to radicals
 25μs time resolution
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Oxidation of a prototypical cycloalkane: cy-C5H10

Experiments
• Wu and Bayes (1986), direct R + O2 kinetics @3.5 Torr, 298 K
• DeSain and Taatjes (2001), HO2 time traces up to 60 Torr, 723 K
• Daley et al. (2008), shock tube ignition delays

Theory:
• Sirjean et al. (2009): ROO → products, CBS-QB3
• Miyoshi (2019): R + O2, γ-QOOH + O2, CBS-QB3 

Theory, modeling, experiments
• Al Rashidi et al. (2017), 3 papers:

o R + O2, γ-QOOH + O2, CCSD(T)-F12//MO6-2X
o master-equation modeling
o shock tubes, RCM, JSR

• ST, JSR, RCM probe mostly stable products
• “no low-T chemistry”

Al Rashidi et al, PROCI 36 (2017) 469
Our goal:
• Direct, time-resolved probe of critical intermediates and products
• Coupled to theoretical kinetics, master equation modeling
• Elucidate primary oxidation sub-mechanism
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γ-QOOHβ-QOOH

ROO

CCSD(T)-F12/cc-pVDZ-F12//MO6-2x/6-311++G**+O2

γ-OOQOOH

+O2

Calculated R + O2 + O2 PES and theoretical kinetics

+O2

Judit Zádor Amanda 
Dewyer

1. Major product: 
cy-C5H8

2. γ-QOOH dominant 
in 2nd-O2 addition

3. Four hydroperoxides are plausible
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Cl2 + hν(351nm)  →   2Cl•

ROO•R•

+O2
Cl• HCl

products

Cl2/cy-C5H10/O2/He

Time-resolved SVUV-PIMS at P = 10 bar, T = 450 – 650 K

Maria 
Demireva

 Most of these species have not been 
detected before

 Unknown PI cross-sections, 
fragmentation patterns
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Species assignments and photoionization spectroscopy
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Species assignments and photoionization spectroscopy

ROO+ ⟶ R+ (m/z = 69) + O2C5H8O3
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Species assignments and photoionization spectroscopy
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•QOOHROO•
•OOQOOH

R•

+O2 +O2

+ HO2
•

+ HO2
•Cl• HCl

+ •OH

+ •OH

+ •OH

= directly detected = quantified from reference PIXS

Quantification from C atom balance

Missing Carbon 
(cy-C5H10 depletion)

ROO

fitted 
sum

sum of 
hydroperoxides

OOQOOH

(fixed)

T = 550 K
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550 K525 K500 K450 K 575 K 600 K 625 K 650 K

ROO sum of hydroperoxides
OOQOOH

 Global fit at all T
 cy-C5H10, minor products 

fixed
 Adjustable (T-independent) 

total PICS:
• ROO
• OOQOOH
• “Effective” PICS of 

hydroperoxides

Quantification from C atom balance – global fit
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m/z = 68m/z = 69

m/z = 84

Absolute concentration-time profiles

σ 
(M

b)

Energy (eV)

AIEs

VIEs

OOQOOH, m/z = 84 channel

ROO, m/z = 69 channel

Absolute photoionization cross-sections

Quantification from C atom balance
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450 K, 
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Diethyl ether – prototypical small linear ether

Cl·
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first direct 
detection:

Demireva et al., PCCP, 22 (2020), 24649

− CO2 − CH3
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− O2− C2H4O

− O2 − C2H4
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products

Maria 
Demireva
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Experimental quantification ⟶ absolute PI cross-sections for ROO, OOQOOH, KHP

Diethyl ether – prototypical small linear ether



24

back to cyclopentane – Master Equation model optimization

Modeling and mechanism construction
• Master equation for primary reactions
• ME parameters: energies, vibrational frequencies, 

hindered rotors, energy transfer
• only 6 out of 223 parameters are 

highly sensitive at T < 600K:
o ROO ⟶ cy-C5H8 + HO2
o ROO ⟶ γ-QOOH

ROO sensitivity, t = 
5ms

Genetic algorithm optimization
• Monte Carlo parameter sampling
• Well energies ± 0.5 kcal/mol; barriers ± 1 kcal/mol; frequencies ± 5%; tunneling ± 20%
• Master Equation sub-mechanism embedded in comprehensive cyclopentane mech. 

(LLNL + NUIG, Comb. Flame, 225 (2021), 255) 
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back to cyclopentane – Master Equation model optimization

rate coefficient, s–1

prior

optimized

HO2

101 102 101 102 103

88±15
51±15

97±54 142±95

ROO ⟶ cy-C5H8+HO2

ROO ⟶ γ
-QOOH

Genetic algorithm optimization
• 500 model realizations per generation
• Model predictions comparison with time-

resolved experiments for cy-C5H10, ROO, 
OOQOOH, cy-C5H8

• Simultaneous comparison at T = 450 – 575 K
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Outlook: complementary reactors, probe methods

gas in

High-Pressure Laminar Flow Reactor

6 mm

0.45 mm
130 x ID = 0.1 mm
dilute reactant

buffer/O2

n-heptane/air, 
10 bar, 600K

1cm = 25 ms
• up to 100 bar, 1000 K
• thermal initiation
• residence times 0 – 2 s 

with < 10 μs resolution

4 cm

LI
F

PMT

Quantitative OH, HO2 detection via high-P FAGE

Fluorescence Assay by Gas 
Expansion

high-P photolysis 
or flow reactor 
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Conclusions

New highly sensitive time-resolved SVUV-PIMS setup
• Homogeneous, 0-D high-pressure laser photolysis reactor
• High-density ionization scheme
• Detection of radicals and reactive intermediates

Experimental quantification from time-resolved C atom balance
• Absolute concentration-time histories
• PI cross-sections for detection in more complex reactions
• Approaches the accuracy of stable, commercially available compounds

Coupling of detailed chemical speciation to theory and modeling
• ME model optimization of cyclopentane low-T oxidation
• Near-term plans: combine with time-resolved OH, HO2 measurements via FAGE/LIF
• Combine with complementary experiments (JSR, possibly others)
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