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: ‘ Motivations & Objectives

Impact of micro-lithofacial heterogeneities on mechanical properties of Mancos Shale

P Mechanical properties of fine-grained sedimentary rocks (shale and mudstone) are governed by
heterogeneous mineral composition and geologic features

Grid nanoindentations

: Load-displacement curves
over clay-rich area

SEM image of shale
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3 ‘ Motivations & Objectives

Impact of micro-lithofacial heterogeneities on mechanical properties of Mancos Shale

P Mechanical properties of fine-grained sedimentary rocks (shale and mudstone) are governed by

heterogeneous mineral composition and geologic features

P Develop machine learning methods for mechanical properties by integrating high resolution mineralogy

mapping, multiscale nanoindentation analysis, and (modeling)

Grid nanoindentations

SEM image of shale over clay-rich area
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4 ‘ MAPS Mineralogy

o SEM-based Modular Automated Processing Systems (MAPS):
mineralogical measurement, analysis, data integration

e Mineral identification
- Spectral matching
- Each pixel - single/multiple minerals

Spectral matching for multiple
minerals @ pixel

Yoon et al. (AAPG, Memoir 120, Chap. 8, 2021)

Yellow Box (1.45 x 1.98 cm):
BSE @ 1Tum & MAPS @ 10um
Red box (0.18 x 1.98 cm):

BSE @ 0.2um & MAPS @ 2um

BSE image and mineralogy map
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: ‘ Effect of geological attributes on mechanical properties

Micro-lithofacies Mineral
Assemblages  Mechanical properties = f(mineral composition)? Yes

Mineralogy

Mechanical
» o —
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Green line at ~33% clays rather than ~40% was
Medium suggested (Bourg, 2015) to separate the brittle
Sand shale from sealing shale.
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Nanoindentation

e Depth sensing/instrumented indentation

- Highly accurate load-displacement record
- Determine modulus, hardness and other mechanical
properties using the load-displacement data A

Berkovich
indenter

e Analytical concept

- Purely elastic deformation upon initial unloading o
- Hardness = load/contact area & | unosone /
. . . — S
- Elastic modulus determined by stiffness (S) : FossieLE.
o B
he For =1 // \ (g
h.For €=0.72
DISPLACEMENT, h

[Hysitron Triboindenter 900] Oliver & Pharr (1992)

Indentation strain rate = 0.1 (Oliver et al., 1997)
(current change in displacement/current total disp.)
Maximum load = 0.1,1 10 mN (multiscale indenting)
A total of >1500 indentations were performed.




Nanoindentation Impressions

T R o (1-2) Low-clay contents: surface of pure quartz and feldspar
A7 e’ having higher values of mechanical properties such as elastic
| . modulus and hardness

(3) Dissolution surface of feldspar (mechanical properties are
weaker)

(4-6) Grain-to-grain boundary and edge-of-grain, which have
lower mechanical properties values

Variations of measured modulus at low clay contents came from

geological textures such as boundary of grains, dissolution of
grain etc. that are likely to form during diagenesis.
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Estimation of Properties using Machine Learning

Step 1. Clustering dataset based on mineral composition

Table 1: List of mineral composition

mineral composition

quartz feldspar muscovite kaolinite
illite smectite Mg-chlorite  Fe-chlorite
zircon calcite dolomite ankerite
apatite  monazite pyrite sphalerite
rutile  unclassified porosity organics

Step 2. Building regression models for each cluster (linear, Gaussian process, support vector machine, XG-Boost)

Cluster 1
Hardness (H) Reduced Young Modulus (E;)
(input) Cluster 2 (output)

Cluster n

Kadeethum & Yoon (ARMA proceedings, 2022)



Clustering: balanced iterative reducing and clustering using hierarchies |
9 I (BIRCH)

1. BIRCH has two primary hyperparameters, threshold and number of clusters. The threshold
constraints a radius of the sub-cluster obtained by merging a new sample and the closest sub-cluster.

2. We set threshold as 0.001 throughout this study. Data J,_ I

CF: Clustering
B

Feature

[ Phasel: Load into memory by building a CF tree ]

Initial CF tree J{ /\

Phase 2 (0ptional)£ Condense into desirable range
by building a smaller CF tree

3. We have tested number of clusters

from 1 to 8 (but we shown our result only 1 to 5)

smaller CF tree ¢ PN
————
Hierarchical CluSteﬂng [ Phase 3: Global Clustering ]
]
Good Clusters e —
l
[ Phase 4: (optional and off line) : Cluster Refining ]
@

Better Clusters ¢ e

http://www.cs.uvm.edu/~xwu/kdd/BIRCH.pdf



http://www.cs.uvm.edu/~xwu/kdd/BIRCH.pdf

Clustering Results

1. The training set has a total members of 237

Table 4: Clustering results for the training set: we cluster the

data using mineral composition.

number of members

number of clusters

for each cluster | 2 3 4 |5
| 237 | X X X | X
2 228 | 9 X X | X
3 167 | 61 9 X | X
4 103 | 64 | 61 0 | x
< 5 37 | 66 | 64 | 61 9
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Cl

ustering Results

1. Cluster 1 represents the most heterogeneous materials where many minerals co-exist

2. Cluster 2 is dominated by feldspar & clays
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Clustering Results

1. Cluster 3 1s predominantly quartz

2. Cluster 4 contains a high fraction of smectite/illite

. (c) 1 - (d)
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Clustering Results

1. Cluster 5 is dominated by carbonates (dolomite /ankerite)
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Building a regression model for each cluster

Four types of regressors: 1. linear regression (LR), 2. support vector regression (SVR),
3. Gaussian process regression (GP), and 4. extreme gradient boosting regression (XGBoost)

For SVR, we utilize a quadratic polynomial kernel with an independent term of one, a
regularization parameter of 100, and a kernel coefficient of one over number explanatory
variables

For GP, we use normal prior bias and white noise kernel

For XGBoost, we use 100 weaker estimators with maximum tree depth of five, and two
regularization parameters (1.0 & 0.0)
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Regression model results

= Overall, Case with 5 clusters yields the best results

" Tentative results: linear regression (LR) performs well

= CF with explicit coordinates in an Fuclidean space may work
well with LR

* Due to a small testing data this comparison needs to be

performed more comprehensively

Table 3: R? results of different models using hardness (H) as
iput and reduced Young’s modulus (£} ) as output. We cluster
the data using mineral composition.

RZ
LR SVR GP XGBoost
0.717 | 0.722 | 0.717 0.649
0.921 | 0.906 | 0.921 0.923
0.921 | 0.906 | 0.921 0916
0.923 | 0915 | 0.924 0.905
0.933 | 0.925 | 0.933 0.906

number of clusters

n| | | | —

Reduced E [GPa]

Reduced E [GPa]

80 A

70 A

60

50 A

40 -

30 A

20 A

Testing results (Linear Regression)
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y Regression model results

1. Overall, clustering based regression match experimental data much better

2. For low hardness data where clay mix is dominant, regression needs to be improved

Training & testing results (Linear Regression)
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Simulation of Nanoindentation

17
Indentation
Model setup impression
ABAQUS FEA
Force vs. Displacement
§ Loading
2
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—8—Step 1- Load —@—Step 2- Hold ~ —@—Step 3-Unload

Quartz

Simulated
Indentation mark

=Simulated indentation mark mimics an
ideal indentation mark on quartz well

=Simulation results clearly show that
calculated elastic modulus at different
locations from the center of quartz to
clay decrease

=This clearly demonstrates that the
precise location of indentation (in
other words, compositional
heterogeneity) impacts estimated
mechanical properties significantly



s | Summary

* The balanced iterative reducing and clustering using hierarchies (BIRCH) with
multiple regressors (LR, GPR, SVR) perform well to predict the reduced Young's
modulus of highly heterogeneous materials from nanoindentation experiments.

= Clustering was performed with mineralogy compositions
= Five clusters tend to work well and could be represented by mineralogy distribution

= In the future, we plan to perform conditional variational autoencoder (cVAE) to
develop a more robust model to account spatial distribution of mineralogy and
geologic attributes



Summary
19

The balanced iterative reducing and clustering using hierarchies (BIRCH) in conjunction with
linear regression or GGaussian process regression can be very accurate to predict the reduced
Young's modulus of highly heterogeneous materials from nanoindentation experiments.

2. We cluster the dataset from mineralogy classification through scanning electron microscope

(SEM) images.

3. We observe that the number of clusters of five delivers the most accurate results.

4. We also 1illustrate these five clusters could be represented by the physical mineralogy.



