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Motivations & Objectives
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► Mechanical properties of  fine-grained sedimentary rocks (shale and mudstone) are governed by 

heterogeneous mineral composition and geologic features

Grid nanoindentations

over clay-rich area 
Load-displacement curvesSEM image of shale

Impact of micro-lithofacial heterogeneities on mechanical properties of Mancos Shale

Optical image
50mm



3

► Mechanical properties of  fine-grained sedimentary rocks (shale and mudstone) are governed by 

heterogeneous mineral composition and geologic features

► Develop machine learning methods for mechanical properties by integrating high resolution mineralogy 

mapping, multiscale nanoindentation analysis, and (modeling)

Grid nanoindentations

over clay-rich area 
Load-displacement curvesSEM image of shale

Impact of micro-lithofacial heterogeneities on mechanical properties of Mancos Shale

Optical image
50mm

Motivations & Objectives



MAPS Mineralogy
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• SEM-based Modular Automated Processing Systems (MAPS): 

mineralogical measurement, analysis, data integration

• Mineral identification
– Spectral matching

– Each pixel – single/multiple minerals

200 mm

Yellow Box (1.45 x 1.98 cm):

BSE @ 1mm & MAPS @ 10mm 

Red box (0.18 x 1.98 cm):

BSE @ 0.2mm & MAPS @ 2mm

Ion-milling polished 

Mancos sample

(2.5cm diameter)

Spectral matching for multiple 

minerals @ pixel
BSE image and mineralogy map

Yoon et al. (AAPG, Memoir 120, Chap. 8, 2021)



Effect of  geological attributes on mechanical properties
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Micro-lithofacies

Ternary diagram after Ulmer-Scholle et al. (2014)

Bourg

(EST let. 

2015)

Mineral

Assemblages

Sandy

Coarse

Mud

Coarse

Mud

Medium

Mud

Fine

Mud

Medium

Sand

Mechanical properties = f(mineral composition)?   Yes

f(geological textures)? Yes

Green line at ~33% clays rather than ~40% was 

suggested (Bourg, 2015) to separate the brittle 

shale from sealing shale. 

Our results match a clay boundary of 33%. 

The fine mud is within the transition zone 

and other micro-lithofacies are within the 

brittle zone. 

Comparison of BSE, mineralogy, and 

mechanical grouping shows 

geological attributes would impact 

mechanical properties, too. 

Three mechanically significant mineral assemblages Kwon (MS, NMT, 2018)
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• Depth sensing/instrumented  indentation

– Highly accurate load-displacement record

– Determine modulus, hardness and other mechanical 

properties using the load-displacement data

• Analytical concept

– Purely elastic deformation upon initial unloading

– Hardness = load/contact area
– Elastic modulus determined by stiffness (S)

Oliver & Pharr (1992)

Berkovich

indenter

[Hysitron Triboindenter 900]

Indentation strain rate = 0.1 (Oliver et al., 1997)

(current change in displacement/current total disp.)

Maximum load = 0.1,1 10 mN (multiscale indenting)

A total of >1500 indentations were performed.

Nanoindentation



Nanoindentation Impressions 
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(1-2) Low-clay contents: surface of pure quartz and feldspar 

having higher values of mechanical properties such as elastic 

modulus and hardness 

(3) Dissolution surface of feldspar (mechanical properties are 

weaker)

(4-6) Grain-to-grain boundary and edge-of-grain, which have 

lower mechanical properties values 

Variations of measured modulus at low clay contents came from 

geological textures such as boundary of grains, dissolution of 

grain etc. that are likely to form during diagenesis. 

NOTE: Q=quartz, P=pyrite, C=carbonate, F=feldspar, and IL=illite)

Er=79.2 GPa

H=9.15

Er=47.4 GPa

H=5.8

Er=16.7 GPa

H=0.5
Er=32.7 GPa

H=2.3

Er=27.4 GPa

H=1.85

Er=23.1 GPa

H=1.7



Estimation of Properties using Machine Learning

Step 1. Clustering dataset based on mineral composition

Step 2. Building regression models for each cluster (linear, Gaussian process, support vector machine, XG-Boost)
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Cluster 1

Hardness (𝐻) 

(input)

Reduced Young Modulus (𝐸𝑟) 

(output)Cluster 2

Cluster n

Kadeethum & Yoon (ARMA proceedings, 2022)





Clustering: balanced iterative reducing and clustering using hierarchies 
(BIRCH)

1. BIRCH has two primary hyperparameters, threshold and number of  clusters. The threshold 
constraints a radius of  the sub-cluster obtained by merging a new sample and the closest sub-cluster. 

2. We set threshold as 0.001 throughout this study.

3. We have tested number of  clusters 

from 1 to 8 (but we shown our result only 1 to 5)
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CF: Clustering 

Feature

Hierarchical Clustering

http://www.cs.uvm.edu/~xwu/kdd/BIRCH.pdf

http://www.cs.uvm.edu/~xwu/kdd/BIRCH.pdf


Clustering Results

1. The training set has a total members of  237
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1. Cluster 1 represents the most heterogeneous materials where many minerals co-exist

2. Cluster 2  is dominated by feldspar & clays
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Cluster 1 Cluster 2

Clustering Results



1. Cluster 3  is predominantly quartz

2. Cluster 4 contains a high fraction of  smectite/illite
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Cluster 3 Cluster 4

Clustering Results



1. Cluster 5  is dominated by carbonates (dolomite/ankerite)
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Cluster 5

Clustering Results



Building a regression model for each cluster

▪ Four types of  regressors: 1. linear regression (LR), 2. support vector regression (SVR), 
3. Gaussian process regression (GP), and 4. extreme gradient boosting regression (XGBoost)

▪ For SVR, we utilize a quadratic polynomial kernel with an independent term of  one, a 
regularization parameter of  100, and a kernel coefficient of  one over number explanatory 
variables

▪ For GP, we use normal prior bias and white noise kernel

▪ For XGBoost, we use 100 weaker estimators with maximum tree depth of  five, and two 
regularization parameters (1.0 & 0.0)
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Regression model results

▪ Overall, Case with 5 clusters yields the best results

▪ Tentative results: linear regression (LR) performs well

▪ CF with explicit coordinates in an Euclidean space may work 

well with LR

▪ Due to a small testing data this comparison needs to be 

performed more comprehensively
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Testing results (Linear Regression)



Regression model results

1. Overall, clustering based regression match experimental data much better

2. For low hardness data where clay mix is dominant, regression needs to be improved
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Training & testing results (Linear Regression)

y = 6.312x + 18.686

R² = 0.8665

y = 14.598x + 19.86

R² = 0.79

y = 15.24x + 15.516

R² = 0.2633
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Simulation of Nanoindentation
17
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Elastic Modulus

Quartz

Clay

ABAQUS FEA

Indentation 

impressionModel setup
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Indentation mark
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▪Simulated indentation mark mimics an 

ideal indentation mark on quartz well

▪Simulation results clearly show that 

calculated elastic modulus at different 

locations from the center of quartz to 

clay decrease

▪This clearly demonstrates that the 

precise location of indentation (in 

other words, compositional 

heterogeneity) impacts estimated 

mechanical properties significantly



Summary

▪ The balanced iterative reducing and clustering using hierarchies (BIRCH) with 
multiple regressors (LR, GPR, SVR) perform well to predict the reduced Young's 
modulus of  highly heterogeneous materials from nanoindentation experiments.

▪ Clustering was performed with mineralogy compositions

▪ Five clusters tend to work well and could be represented by mineralogy distribution

▪ In the future, we plan to perform conditional variational autoencoder (cVAE) to 
develop a more robust model to account spatial distribution of  mineralogy and 
geologic attributes
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Summary

▪ The balanced iterative reducing and clustering using hierarchies (BIRCH) in conjunction with 
linear regression or Gaussian process regression can be very accurate to predict the reduced 
Young's modulus of  highly heterogeneous materials from nanoindentation experiments.

▪ 2. We cluster the dataset from mineralogy classification through scanning electron microscope 
(SEM) images. 

▪ 3. We observe that the number of  clusters of  five delivers the most accurate results.

▪ 4. We also illustrate these five clusters could be represented by the physical mineralogy.
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