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Single-Dopant	Placement	-	APAM

Fuechsle et al. Nat Nano 7 242-246  (2012)    DOI: 10.1038/nnano.2012.21 

HDL	has	been	used	for	placement	of	P	atoms	deposited	from	PH3,	to	make	P-based	spin	or	

charge	qubit	devices				-	quantum computers.		
A	new	type	of	2D	material,	made	of	arrays	of	dopant	atoms	positioned	precisely	within	Si,	

has	been	proposed.					-	2D Quantum Metamaterials.
Other ultraprecise devices, e.g. Tunnel FETs and Bipolar Junction Transistors, have 
also been proposed. -Atomically Precise Advanced Manufacturing (APAM)

Image courtesy of M. Simmons, UNSW.

The Single-Atom Transistor

Bussmann, E. et al.    Atomic ‑ Precision Advanced Manufacturing for Si Quantum Computing. 
MRS Bulletin. 2021, 46, 1–9. DOI: 10.1557/s43577-021-00139-8 

http://dx.doi.org/10.1038/nnano.2012.21


Automated	AP	LaPce-Aligned	PaQerning

1 px (0.768 nm)

10 px boxes (7.7 nm)

100 px = 77 nm

200 nm

10 µm

Zyvex	Labs	developed	tools	for	automation	of	Atomically	Precise	STM	lithography,	

aligned	to	the	surface	lattice.	



Bipolar	devices

• In	order	to	expand	the	range	of	applications	of	APAM	technology,	we	need	precursors	for	both	donor	and	acceptor	dopants.	

• Here	diborane	and	phosphine	were	used	to	make	a	p-n	junction,	depositing	B	first	and	then	P.

Pattern and deposit Dopant A Pattern and deposit Dopant B

Incorporation 
Anneal

Burial

“Bipolar	device	fabrication	using	a	scanning	tunnelling	microscope”			

T.	Škereň,	S.A.	Köster,	B.	Douhard,	C.	Fleischmann,	and	A.	Fuhrer,	Nat.	Electron.	1	(2020).



• It is not obvious that diborane can be used to place single B dopants.

• Alanes, analogues of phosphine, are not stable at room temperature.

• In the CVD and ALD worlds, typical Gr. III precursors are alkyls:

• Trimethyl Al (TMAl), Triethyl Al (TEAl)

• However, we have found that alkyl precursors show weak selectivity for APAM, due to a strong 
van der Waals interaction with the H-terminated surface.

• Owen, J. H. G. et al. Al-Alkyls as Acceptor Dopant Precursors for Atomic-Scale Devices.  
J. Phys. Condens. Matter 33, 464001 (2021).

• Hence we have moved to halide precursors, BCl3 and AlCl3 

• Dwyer, K. J. et al. Area-selective deposition and B delta-doping of Si(100) with BCl3 ;  
Radue, M. S. et al. AlCl3-dosed Si(100)-2x1: Adsorbates, Chlorinated Al Chains, and Incorporated 
Al. arxiv (2021)

APAM	Precursors	for	B,	Al



Pattern n-type electrodes

Pattern p-type electrodes

Incorporate and Anneal; 
RepassivateDose PH3

Dose BCl3 Burial

Relocate pattern in STM

Remove 
to Prep

Remove 
to Prep

Bipolar	Device	Fabrica`on	Process



Loca`ng	devices	on	the	substrate

An STM tip landing on the central 20 µm 
device area defined on a 4x8 mm Si 
sample in an Omicron VT STM.

STM image of the central device area, 
showing 4 lobes for contact pads.

P

P

B

Our ZyVector STM lithography control 
system allows multiple images to be laid 
out to show the position of patterns 
relative to the overall substrate, for easy 
relocation. 

Topography, dI/dZ and dI/dV images 
can also be mixed.



Wri`ng	an	atomic-scale	pn	junc`on

Sample Map views of P electrode patterns after writing using SVG patterns (red)



Realignment to device (blue edged image) after P dosing and incorporation

Wri`ng	an	atomic-scale	pn	junc`on



Wri`ng	an	atomic-scale	pn	junc`on

Aligning B pattern to incorporated P B pattern with zero gap to incorporated P 



Mul`variant	Imaging	for	Device	Metrology

• Trials of bipolar device patterning; alignment of B to P. 


• dI/dZ imaging gives good contrast for surface features, such as patterns of bare Si, and surface dopant patches.  Here, 
with dI/dZ imaging, the contrast of the B patch is much clearer, and the pattern for the P electrode can be aligned to the 
existing B patch with dimer row resolution. 


• dI/dV imaging allows buried devices to be imaged, to confirm their presence after the overgrowth process. 

Topo dI/dZ dI/dV

B

B

P
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Junction 100 nm wide.
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Junction 100 nm wide.

1 µm250 nm250 nm



Simula`on-Experiment	Comparison	for	p-n	delta	layers

Simulations	were	done	using	

Charon,	an	open-source	device	

modelling	code	developed	at	

Sandia	National	Labs. (https://charon.sandia.gov/

B2BT	=	Band-to-band	tunneling	

B2TT	=	Band-to-trap	tunneling

With	B2BT	and	B2TT,	simulation	results	are	in	
decent	agreement	with	the	experimental	data	
except	for	voltages	less	than	0.2	Volts.	

*	T. Škereň et al. Nat. Electron., vol. 3, pp. 524–530, 2020.



Simulated	I-V	dependence	on	p-i-n	gap	width

The	distance	between	the	two	delta	layers	is	

varied.	

When	the	gap	is	4	nm	or	bigger,	the	
negative	differential	conductance	(NDC)	
behavior	is	diminished.			

We are exploring this experimentally.



Fabrica`on	of	devices	with	variable	gap	widths

130 px = 100 nm

P

P

P patterns are drawn first, and 
saturated with PH3. An 

incorporation anneal is used to 
activate the P dopants. 50 nm



Fabrica`on	of	devices	with	variable	gap	widths

130 px = 100 nm

B

P

P

3 px = 2.31 nm

0 px

3 px = 2.31 nm

B patterns are aligned to 
incorporated P patches, with 

gaps varying from 0-10 px. 

10 px = 7.68 nm

B

0 px

50 nm



Conclusions

• We are developing STM Lithography for Atomically Precise Advanced Manufacturing.


• Patterns can be drawn with atomic precision from the single-px scale, up to the full range of the STM 
scanner.


• Creep, hysteresis and thermal drift position errors are corrected in real-time in our ZyVector™ controller 
to achieve near-perfect positioning.


• For bipolar devices, the n-type patterns are written first, dosed with PH3, and the P incorporated. The p-
type patterns are aligned to the P patches to provide atomic-precision gaps between p and n electrodes. 


• dI/dZ and dI/dV imaging simultaneous with topographic imaging provide extra electronic contrast of 
patterns and incorporated dopants, to make alignment of patterns easier.

• p-i-n junction device simulations indicate that the device behaviour is strongly dependent upon the gap 
width. A set of junctions of varying width (0, 3,10 px) have been fabricated to test this prediction.

• The next step will be to measure the electrical properties of these devices, compare to the modelling, and 
test these predictions.


