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P/ Anisotropic Failure Method
'/ Problem
‘4

Desire: anisotropic damage/failure model
Opportunity: many anisotropic damage models in literature
ASTMES8 smooth tension
Round Tension Stress-Strain Results- Al 6061 T6 Challenge; “too ma ny pa rameters”,
{All Round Tension Tests from CA and NM)

“difficult to calibrate”,

RDO-01 —— RD-02 . ) .
—fpoe  —RDO7 "dlfflculp to |mpleme.nt , )
I IRRhaea oTroacA expensive to run / fine mesh”,
-+ — L “not robust”
IIIENsEe  ClliToach )
—st03 ——stod Proposed Solution
STO07 = = = 8T-01-CA . . . . .
‘ ‘ _ ---ST02Ch - --3T03-CA Concept: turn isotropic model into anisotropic model;
° o o2 establish a directionally-weighted equivalent

Enginearing Extensometer Strain (infin) plastic Strain rate:

Anisotropic Failure!

Caveats: not derived from physics / microstructure,
limited representation from weighting order

Upside: easy, low-cost, familiar




/ Anisotropic Failure Method
%

Current Practice in Sierra/LAME: modular material modeling

*

Modular Plasticity
Model

Modular Failure
Model

Complete
simulation with

Yield Surface failure

Johnson-Cook, |-
Tearing Parameter,
Wilkins,
Bammann-Chiesa-Johnson,
etc.

+

Hardening Mode|
+

Rate-Dependence

Softening,
Element Death,
Nonlocal Regularization

Plastic Strain Rate Damage/Failure Variable




/ Anisotropic Failure Method

Concept: establish a directionally-weighted equivalent plastic strain

Modular Plasticity :
Model Modular Failure Complete

Anisotropic Model simulation with
Yield Surface Weighting failure

Johnson-Cook,

2nd-order weighting, Tea””\%ﬁﬁ)ﬁ;@meter' Softening,

4th-order weighting 1 e B Element Death,
etc. Nonlocal Regularization

+

Hardening Mode|
+

Rate-Dependence

Plastic Strain Rate, Weighted Plastic Strain Damage/Failure Variable
Flow Direction




Anisotropic Failure Method

4 Concept: establish a directionally-weighted equivalent plastic strain rate
. . =p . 0o, . . . o,
Plastic Strain: i =7 P 4: scalar plasticity rate : flow rule
04j 801-]-
. . . Ky - N . 80'*
Equivalent Plastic Strain Rate: &;; = €’ Ny =7, Ny=—
¥
P ap —
solve: p_ VI VEPieR
\/NijNij \/N . N
' . . 2nd-order formulation
Weighted Plastic Strain Ratezép & AuE S \/tr(gp A&y o | NigAj Nt _ 6.p\/tr(z\f.A-N)
B N@jN@'j B N : N B Nz'sz'j - N:N

4th-order formulation

=P ... =P = . L= . :
“p \/Ez‘sz]klgkl EP . B : &P 'p\/NijBijklNkl p N:B: N
g5 = = g

Nisz'j N: N




P Developing Flow Stresses from Plasticity Models

Yield Surface:

d d
« ]2 /Von Mises a*:\/§adevzadev g G Eet _\/5 "
2 (701-3- 2 (o 9 \/O-dev . O'd’
3 0 3 H: dev 3 H - dev
o Hill U*:\/—Ode”:H:Jde’“ N = I _ 2020 /9 g
2 80’@' 2 (o 2 \/O-dev - H : gdev
g oo,
_ @+ . a+ . a\ o _ B e
» Hosford o, — (1=t — o — il N = g5 = V@) AV (),
lor—oa11|* *(or—o11)—|orri—o1|* *(orir—or)
A = diag lorr—or11|® *(orr—or11)—|or—orr|* *(cr—orr)
2
lorir—or|* *(orri—or)—|orr—crr|* *(orr—orir)
(etc) >




P Anisotropic Failure Method

Application to Failure Models:

integrate against weighted equivalent plastic strain rate/increment

Johnson-Cook: D/(d1+d2exp(d3T)>

Tearing Parameter:

Bammann-Chiesa-Johnson damage:

Simple Direct Integration:

1
b= |
wcmt

_d’

dt
- 77Dcmt dt/

{deP, 27} — {d&P,2P)

de?

(1 + d4§—§) (1 + d5é> - / (dy + dy exp(dsT))

0

D— 1 /< 20‘1
wcrit 3 (O_l — Om

S RETET LN
(’5_\/; 1)

51— (1 =)™t
- \/;8 (1— o)

: (4 JZ]

Y= pEPN, (N | — — 22
= 4( tlor T B
2 (4 JZ]

@ N, N, = = 23

ne 4( 1-27 J23_

(1 + dy i:ﬁ

) (1 + d5é)

: N :
deP — /< > deP
)> wcm't 3 (Ul - Um)
[2(2m — 1) (p) ] 2.
h 1 —
sin om 1 af_+( )Ny
[2(2m — 1) (p) | 2.
h 1 —
St  2m+1 0'f_+< ¢) e
J3 [ |p] |
TN
J3 [ |p| |
TN N




Anisotropic Failure Method

Weighting Notes:
*  Symmetric operation requires major symmetry: Aji = Akj,  Bijki = By
« Symmetric stress tensor, flow-direction tensor - requires minor symmetry:

Bijki = Bijik = Bjiti = Bjuk

« - Voigt notation can be used for 4th-order weighting:  Bjx = BY;, N;; = N¥

NenNy SV TN Ny

* Reproducing lower-order weights...

* Isotropic: 1 :
Ay =045 = I323y,  Bijri = 2 (05051 + 0:1051) ,  BY = Iigz6)

« 2nd-grder (diagonal):
1 1 1
B = ding | A3, 43, 43, (A} + 45), (45 + 4. 3 (45 + AD)




Anisotropic Failure Method

%

4 _
Weighting Notes:
* From eigenvalue decomposition...
« 2nd-order tensor (6 entries) contains:
3 unique weights + rotations

1 -05 0
[prﬂr‘;‘-"}i {ﬂr‘;‘-"}zsz A= |[-05 1 0

Weight 0 0 0.1 vvorse Weight

. Quadric Surface

(Ellipsoid)

=1

Weighting surface: Failure surface:
p=+N(@®6,¢9)-A-N6,¢) p=1//N@,¢9)-A-N@6,¢)

o0& |
LE
0z.

-0
04
-0.8 J

o5

4th-order tensor (21 entries) contains:
6 unique weights + “rotations"

0
1.5

) 0
0

-

) 0
0

-

0
0
0
0

0
0
0
0

0
0
0

OSSO S O N
S SO~ O
SO SO

Irreor s Weight

<

Weighting surface: Failure Surface:

p=+N(6,4):B:N(6,$) p=1/JN(6,¢):B:N(6,9)




P Anisotropic Failure Method

Weighting Notes:
« sgrt term requires some constraints...
« For general (real-valued) matrix N, we should require that {4, B} are positive semi-definite...

tr(N-A-N)>0, N:B:N>0

« Positive Semi-Definite equivalent to...
Non-negative eigenvalues: min(eig(4)) = 0
» All three invariants non-negative I;,1,,13 = 0

- BUT, for many common plasticity models, N is known to be traceless
« This weakens the PSD conditions on {4, B}. We now only require:

1.0 0 0
= >
h=4+4;+4320 where \; = etg(A) example: A=|10 05 0
I = A4A; + A3 + 434, 2 0 0 0 —-0.1

I; = ;4,43 may be negative
* Unknown impact on B...

« Practical implementation:
« PSD wrt. traceless N is ideal, but not required. If N- A - N < 0, set to zero in weighting calc




P Anisotropic Failure Method

Weighting Notes:

« Could be parametrized from analytical forms and/or calibration

* Analytical forms (speculative)...

- Borrow from literature of anisotropic yield surfaces:

FEr f)=lo:B:0]-1<0
p =p p
F(€7gcrzt) [ : B 8]_1<07

J2 / Von Mises l Hill
1 -1 féooo' | G+H -H -G
—% 1 -1 000 -H F+H -F
o 1| -3 -1 17 00 0 p_ | —H -F F+G
"0 0 0 0 300 - 0 0 0
O 0 0 030 0 0 0
0O 0 0 0 0 3 0 0 0
_ 1 I
2F=pt3m - p
_ 1 1 1
2o=pmtiE
2H:%+L—L

S. Oller, E. Car, J. Lubliner. Definition of a general
implicit orthotropic yield criterion. CMAME. 2003.

0 0
0 0
0 0
2N 0
0 2L
0 0
I =L

Potential Extension (asymmetry):

Flo,f)=lc:B:o+A:0]-1<0
F(eP o) =[P : B:e?P+ A:eP] -1 <07

* Mises-Schleicher
* Drucker-Prager
 Tsai-Wu

« Hoffman

* Etc.




P Calibration Examples

2nd-order weighting:

3 uniaxial tension tests:

1 0 0 -1 0 0 - 0 0
{eV, 85, &8} = {8%,14%, 18%} Ny=1|0 -1 0 No=1|0 1 0 Ny=10 -1 0
0o 0 -1 0o 0 —1 0 0 1
» Tearing Parameter + uniaxial loading... ,_ 1 /dgp_ de
Qpcrit ¢cmt
. . . a/ O O
« Assuming coordinate-system aligned... 4=10 » 0
. 0 0
» Solve as linear system: ¢
[ p [tr(Ni-AN, [0 /2 1 1
Yerit ep 811) r(N11N1 : 611)\/361 + Eb * 6°
| = lap| = |ap /UE(N2-ANS) | |2 1 2 1
zcm-t - ZAi - 812) r(NQZNZ ) - 63\/6&+§b+60
o ep, [UWadNa) | flo Lo+ 2]
(E1) 2054 2/3 1/6 1/6] |a a 5/3  —1/3 —1/3] [(0.08)72 mt 233. 12wmt
N2 = (1/6 2/3 1/6| |b| — |b| = |-1/3 5/3 —1/3| [(0.14)2 mt = 2266¢mt
(D) 22 ., 1/6 1/6 2/3]| |c c ~1/3 —1/3 5/3 | |(0.18)2

cmt —17. 65¢crzt ‘



P Calibration Examples

2nd-order weighting (continued): 233.12 0 0
. wcm't — 1, A= 0 22.66 0 X
 Solution, normalized: \ 0 0 —1765
( 1
{ Yerie = 0.06550, A = |0 0. 0972 (one value set to 1);
\ 0 —0. 0757
2.9368
§ Yerit = 01122, A= | 0 0.2855 0 (tr(A) = 3)
0 0 —0.2224

\

 Add additional uniaxial test in X-Y direction, add shear term:

a d 0 [i % 0 -| {(s’;) waﬂ [2/3 /6 1/6 OW M M {5/3 “1/3 -1/3 o] ((0.08)*%9?,“]

_ py _ 13 1 (28)-242 ., /6 2/3 1/6 0 | |b bl |-1/3 5/3 —1/3 0] |(0.14)2¢2,,
A=|d b O {eiy={16%} Na=|3 7 0 (zg) ki 16 16 23 0 lel el T |13 13 5/3 0 (0.18)*2Z§m
0 0 ¢ 0 0 —% @) 22| 512 512 1/6 1/2| |d d 1 -1 0 2| |(016) 22,

2.9368 —1.6270 0

Yerie = 01122, A = | —1.6270  0.2855 0 *&r = 9.823% would result in no change
0 0 —0.2224 to calibrated parameters,d =0 !




/" Calibration Examples

[2.9368 0 0 W

A= 0 (0.2855 0
r l |

2nd-order weighting (continued): 0 0 02224

Force vs. Displacement

20
151 —— Isotropic \‘\
=== Aniso Symm X
ASTM ES8 Notched = | == 3wy .
Force vs. Displacement ; Z10] L aee oy
Tension | = i=sm
Square tension r=0 039" Y| Aniso Full'Y
10.0 4 . 21 —— Aniso Full Z
- - /
-
- 0
= 7.5
a2 E X 0.0 0.2 0.4 0.6 0.8
E: =, Isotropic Displacement (mm)
" Y 501 ===-Aniso Symm X E Displ ¢
5 ~——- Aniso Symm Y orce vs. Displacemen
[ .
-==- Aniso Symm Z 15
2.5 —— Aniso Full X ‘
tests —— Aniso Full Y T e
—_ = niso Jymm
. 0.0 —— Aniso Full Z NOtChed Z 101 - Aniso Symm ¥ N
. U H - --=- Aniso Symm Z e~
B [|I 0 2 4 G Tension g —— Aniso Full X
B2y ‘ _ now =] —— Aniso Full Y
;3,: ‘ Displacement (mm) r=0.078 1 aniso Rl 7
[
L
e Square o /
T T oe ar s ar or 0 00 a210aIa8 B B 0 i 0.00 0.25 0.50 0.75 LO0
Abaziuie Vahua =i Tren Sirmin Abpolote ek ! Thos el TenS|on Force vs. Displacement Displacement (mm)
notched tension Shear Top Hat
| Force vs. Displacement
{111] 20 g
# o {IEEF
R (11} *  r=dTE
i T B ,._.\15 i " — lsotropic
= am = . —_ —==- Aniso Symm X
m 5 o L IEY ‘{’ [:OFFODéC X NOtChed E -==- Aniso Symm Y
T . - 5} == ANIso Symm : e ~=-- Anisc Symm Z N
e ITE . ::L g 104 --=- Aniso Symm Y TenS|0n g —— Aniso Full X
0 a [ R . - n L 51— Aniso Full Y
00N 000G (60 D05 0oea oem ome wEn A0 00F nme e ?&Z: ?&: f— ?& An!so Symm z r_0'1 56 —— Aniso Full Z
Dghwemsent fin — et 111 0 s il 51 — Aniso Full X
- 1&;:: - ‘&;; - 'ﬁ —— Aniso Full Y 0
01 Aniso Full Z 0.0 0.5 10 15
['] 2' 4 é Displacement (mm)

Displacement (mm)
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Hill Plasticity Model Review (from the Lame 5.4 manual)

V.

/d
/ "Kinematics _ , , Mapping of Yield Parameters Onto Material Strengths
Deviatoric Plastic Flow }
@ | 1 1 1 (&) 1
D;j= DS+ D}, F= + - — ] . L= [ , ]
b 2 L(e%)" (%) (1) 2 (@)
Objective Stress Rate | @ - o L @ [ | ]
Isotropic Elastic Tensor = , N > M=
R A 2 (%) (@) (%)’ 2 (@)
Yield Surface H= @7 | 1 ] | N = @) [ ! ]
Plastic Flow Direction 2 1(a)) (03) (0%)°] 2 | (3
0
Flogs) =olo)-o@) =0 Dh=32L
! Define Anisotropy Ratios Used in Sierra
Square of the Effective Stress ‘ ’
. Rll—% ;R12=‘/§%
¢* (01)) =F(O0n-63)+G(03—011)"+H(@G11 —62)°
| o} 7
F2L62, +2M62, + NG, Note thaﬁ pressure W|II drop out Ry = % . Ry = \G%
Hence, with Associative Plastic Flow,
y e There flow direction is deviatoric o o
Note, ij are Material Directions Ry =33 . Ry =33
g g




P Anisotropic Failure Weighting Calibration for CFRP

Flow Directions in the out-of-plane shears (1-3, 2-3)

Recall The Plastic Flow Direction

L
o =520 NS= 7 (exes+ ese)
N 50_1’]' r 2
M
. . . N®= —(eje;+ ezeq)
Take Stress States From Experiments (just at failure), 2

Rotate into the material frame,

Determine the Plastic Flow Direction 45 Degrees from the material 1 direction in the 1-2 plane

4 = BH —_
Uniaal Stress 11, 22, 33 Directions N PEr ey (P00 T Fom (FrOaest Niee:r e)
Nl = m ((H + G)e'le'l - H€2€2 — G’egeg)
1
2 _ — - X AP — H oo . . . . . .
N° = =g (mHeier + (I + H)eses — Fegey) The equivalent plastic strain at failure will be needed in

1 each of these directions. We will approximate the total
N3 = (—Gee) — Feses + (F+ (Flezes) . . : ) . .
JE 1L G ' 23 strain at failure in these directions as the associated

equivalent plastic strain at failure in that direction




P Anisotropic Failure Weighting Calibration for CFRP

Assume the 4t Order Plastic Weighting Tensor Is Diagonal in the Material Frame

0O 0 0 O
Voigt Form (11:1, 22:2,33:3, 12,21:4, 23,32:5, 13,31:6)

B’ =

eI e R e A b i G R
OO oo T O
S oo o O
O O o O

S0 OO O
- O O O O

Define the failure variable, D. Failure occurs when D =1

D =

1 s dé |dentify the Critical Failure Equivalent Plastic Strain, ¢rie,
Verit / - Verit using the Most Ductile Direction ~0.12 for CFRP

| dentify the plastic failure strains (here the total strains) at failure in the 6 calibration Experiments.
Solve the 6x6 system of Equations defined by:
’ | ’ L] _p

crit _NI'B'Nl
P NI N

Here, | goes 1 to 6




Anisotropic Failure Weighting Calibration for CFRP

« 4 uniaxial tension tests (11,22,33,13) + 2 pure shear tests; {75555} = {0:29%,0.5%, 0.4%, 11%,12%, 15%)

1 0 -0 0 -3 0 0 20 0 0 0 0 0 1
Ny=1[0 =5 0| No=|0 1 0| Ng=|0 —1 0| N=1[3 1 0| Ns=|[0 0 1| Ng=1|0 0 0
0 0 -3 0o 0o -1 0 0 1 0 0 —3 0 1 0 1 00
. , 1 . de
+ Critical-EQPS failure (TP, £ = 0)... p— - [ -
Qpcm’t wcm't (a 0O 0 0 0 O]
0 b 000 0
g |00 c 000
° i i - i i i 000 d 0 0
Assuming coordinate-system aligned, simplest possible... Co o
« Solve as linear system: 00000
()22 [2/3 1/6 1/6 0 0 0] [a] ] [5/3 -1/3 —=1/3 0 0 0] [0.0027%] [3587.96 ]
(Z5) 292, )6 2/3 1/6 0 0 O |b b -1/3 5/3 —1/3 0 0 0] [0.00372 810.19
(e~ 22,1 |16 1/6 2/3 0 0 0f |e c| _|-1/3 —1/3 5/3 0 0 0| [0.00472| |-162.04
(e 22| |1/24 1/24 1/6 3/4 0 O] |d “lal T o 0 —1/3 4/3 0 0| | 0112 | = |—414.46
()22 ., 0 0 0 0 1 0| |e e 0 0 0 0 1 0f]01272 1.39
(%) 22, L O 0 0 0 0 1| |f fl L0 0 0 0 0 1][0132] | L18 |




// Comparison of “Damage” (Failure Parameter) Material Axis Loading
in the 1-2 plane

/
231 Failure is accumulating in the pure shear directions
But VERY slowly. At 10% strain, it is only about 0.06
20 1
Failure occurs in less than 0.5% strain after yield
v 151 s reached in the 11, 22 directions
o
1]
E 10 The tension 45 direction needs to be examined.
5_
D_

000 002 004 006 008 0.10
applied log strain




Prescribed Impact Velocity

1000 m/s
Aluminum Plate (1 cm thick)

Steel Ball (elastic-plastic)

Simulation Terminated at 500 ms

B

/ ;4 A

L FsassasaagEnes, A A
A I 111
ﬁww_:q::h::::ﬁﬁ:ZHE::

P
bh&mﬁ%ﬂ*.‘:Q_:C 17 2 0 O A

Demonstration in a plate puncture problem

&
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&
/ CNJW
A @
/ R:ﬂm
L o =
U o <€



// Demonstration in a plate puncture problem
Isotropic Vs. Anisotropic Failure (with a critical failure eqps of 0.12)

Isotropic Anisotropic
eqps
- 00e+00001 002 003 004 005  67e02
00e+00 02 04 06 0B 108+00 - de—
— ' ‘ | —

0.1 (m)




// Demonstration in a plate puncture problem
Isotropic Vs. Anisotropic Failure (with a critical failure eqps of 0.12)

Isotropic Anisotropic

eqps
40e-06 001 002 003 004 5.6e-02

| ' g

eqps
0.0e+000.01 002 003 004 0.05 6.7e-02

| e—

&

R ' ' 0.101 (m)




P Future Validation Case

45° conical punch with a 0.25" diameter flat-end: 307 |b
carriage and punch

Base Material: 4"-thick Al 6061-T6 Plate

Side
Profile

DIC View

Specimen Geometry (SFC Puncture Specimen C):
* 4" (puncture direction) x 6” long x 3.9" wide

« 2"x4" cutout and a 3” diameter bottom hole for viewing back side
of puncture surface

* Pocket: 3" diameter recessed hole, 0.25” deep with a local plate
thickness of 0.375”

No Puncture

CT6-05
13.81ft/s

CT6-07

17.60 ft/s

Puncture

CTe-12 CTe-10
18.70 ft/s 2115 ft/s

Experiment

S. Kramer

4"

Punciure State
= o =
= (=1 =]
T T

[=]
L)
T

'
| PR AT B TP, Y SN B
& 10 12 14 18 18 20 2

Velocity (ft/s)

Critical Velocity = 17.6 ft/s (5.36 m/s)




P Conclusions & Future Work

Simple anisotropic concept with promising early demonstrations
* Questions remain about bounding of anisotropic weights, positive-semi-definiteness

* Presented two demonstration cases, calibrating to assumed model forms:
* Aluminum metal characterization

« A modular Hill Plasticity and modular anisotropic failure model were presented for homogenized
laminate composites under large deformation cases

« The behavior is richer than isotropic failure simulations

* Next steps:
* more comprehensive testing on 6061-T6 puncture problem

« consider weighting methods equivalent to anisotropic failure surfaces




