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Desire: anisotropic damage/failure model

Opportunity: many anisotropic damage models in literature

Challenge: “too many parameters”,
“difficult to calibrate”,
“difficult to implement”,
”expensive to run / fine mesh”,
“not robust”

Concept: turn isotropic model into anisotropic model; 
establish a directionally-weighted equivalent 
plastic strain rate; 

Caveats: not derived from physics / microstructure,  
limited representation from weighting order 

Upside: easy, low-cost, familiar

Anisotropic Failure!

Problem

Proposed Solution
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Current Practice in Sierra/LAMÉ:  modular material modeling

Modular Plasticity 
Model

Yield Surface
+

Hardening Model
+

Rate-Dependence

Modular Failure 
Model

Johnson-Cook,
Tearing Parameter,

Wilkins,
Bammann-Chiesa-Johnson,

etc.

Complete 
simulation with 

failure

Softening,
Element Death,

Nonlocal Regularization
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Concept: establish a directionally-weighted equivalent plastic strain rate

Modular Plasticity 
Model

Yield Surface
+

Hardening Model
+

Rate-Dependence

Anisotropic 
Weighting

2nd-order weighting,
4th-order weighting

Modular Failure 
Model

Johnson-Cook,
Tearing Parameter,

Wilkins,
Bammann-Chiesa-Johnson,

etc.

Complete 
simulation with 

failure

Softening,
Element Death,

Nonlocal Regularization
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Concept: establish a directionally-weighted equivalent plastic strain rate

Plastic Strain:

Equivalent Plastic Strain Rate:

solve:

Weighted Plastic Strain Rate:
2nd-order formulation

4th-order formulation



Developing Flow Stresses from Plasticity Models
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Yield Surface:

• J2 / Von Mises

• Hill

• Hosford

(etc)
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Application to Failure Models:
• integrate against weighted equivalent plastic strain rate/increment

• Johnson-Cook:

• Tearing Parameter:

• Bammann-Chiesa-Johnson damage:

• Simple Direct Integration:
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Weighting Notes:
• Symmetric operation requires major symmetry:
• Symmetric stress tensor, flow-direction tensor  requires minor symmetry: 

•  Voigt notation can be used for 4th-order weighting: 

• Reproducing lower-order weights…
• Isotropic:

• 2nd-order (diagonal):
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Weighting Notes:
• From eigenvalue decomposition…

• 2nd-order tensor (6 entries) contains:
3 unique weights + rotations

• 4th-order tensor (21 entries) contains:
6 unique weights + “rotations"

Quadric Surface
(Ellipsoid)
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Weighting Notes:
• Could be parametrized from analytical forms and/or calibration

• Analytical forms (speculative)…
• Borrow from literature of anisotropic yield surfaces:

Potential Extension (asymmetry):

S. Oller, E. Car, J. Lubliner. Definition of a general 
implicit orthotropic yield criterion. CMAME. 2003.

J2 / Von Mises Hill
• Mises-Schleicher
• Drucker-Prager
• Tsai-Wu
• Hoffman
• Etc.

? ?
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2nd-order weighting:
• 3 uniaxial tension tests:

• Tearing Parameter + uniaxial loading…

• Assuming coordinate-system aligned…
• Solve as linear system:
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2nd-order weighting (continued):
• Solution, normalized:

• Add additional uniaxial test in X-Y direction, add shear term: 
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2nd-order weighting (continued):

ASTM E8

Square 
Tension

Notched 
Tension 
r=0.039”

Notched 
Tension 
r=0.078”

Notched 
Tension 
r=0.156”



Hill Plasticity Model Review (from the Lame 5.4 manual)
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Kinematics

Objective Stress Rate

Yield Surface

Square of the Effective Stress

Mapping of Yield Parameters Onto Material Strengths

Define Anisotropy Ratios Used in Sierra

Deviatoric Plastic Flow

Isotropic Elastic Tensor

Note that pressure will drop out
Hence, with Associative Plastic Flow,
There flow direction is deviatoric

Note, ij are Material Directions

Plastic Flow Direction
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Recall The Plastic Flow Direction

Take Stress States From Experiments (just at failure),
Rotate into the material frame,
Determine the Plastic Flow Direction

Uniaxial Stress 11, 22, 33 Directions 

Flow Directions in the out-of-plane shears (1-3, 2-3)

45 Degrees from the material 1 direction in the 1-2 plane

The equivalent plastic strain at failure will be needed in 
each of these directions. We will approximate the total 
strain at failure in these directions as the associated 
equivalent plastic strain at failure in that direction
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Assume the 4th Order Plastic Weighting Tensor Is Diagonal in the Material Frame

Voigt Form (11:1, 22:2, 33:3, 12,21:4, 23,32:5, 13,31:6)

Define the failure variable, D. Failure occurs when D = 1

Identify the plastic failure strains (here the total strains) at failure in the 6 calibration Experiments.
Solve the 6x6 system of Equations defined by:

Here, I goes 1 to 6
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Comparison of “Damage” (Failure Parameter) Material Axis Loading 
in the 1-2 plane
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Failure is accumulating in the pure shear directions
But VERY slowly. At 10% strain, it is only about 0.06

Failure occurs in less than 0.5% strain after yield 
is reached in the 11, 22 directions

The tension 45 direction needs to be examined.



Demonstration in a plate puncture problem
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Steel Ball (elastic-plastic)
Prescribed Impact Velocity 
1000 m/s

Aluminum Plate (1 cm thick)

CFRP 1 cm thick
Perfectly Bonded to the
Aluminum Plate

Simulation Terminated at 500 ms



Demonstration in a plate puncture problem
Isotropic Vs. Anisotropic Failure (with a critical failure eqps of 0.12)
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Isotropic Anisotropic



Demonstration in a plate puncture problem
Isotropic Vs. Anisotropic Failure (with a critical failure eqps of 0.12)
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Isotropic Anisotropic
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• 45° conical punch with a 0.25” diameter flat-end: 307 lb 
carriage and punch

• Base Material: 4”-thick Al 6061-T6 Plate

• Specimen Geometry (SFC Puncture Specimen C):
• 4” (puncture direction) x 6” long x 3.9” wide 
• 2”x4” cutout and a 3” diameter bottom hole for viewing back side 

of puncture surface
• Pocket: 3” diameter recessed hole, 0.25” deep with a local plate 

thickness of 0.375”

S. Kramer

4”

3.9”

6”

t=0.375”

2”

Experiment

Critical Velocity = 17.6 ft/s (5.36 m/s)
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• Simple anisotropic concept with promising early demonstrations
• Questions remain about bounding of anisotropic weights, positive-semi-definiteness

• Presented two demonstration cases, calibrating to assumed model forms:
• Aluminum metal characterization
• A modular Hill Plasticity and modular anisotropic failure model were presented for homogenized 

laminate composites under large deformation cases

• The behavior is richer than isotropic failure simulations

• Next steps:
• more comprehensive testing on 6061-T6 puncture problem
• consider weighting methods equivalent to anisotropic failure surfaces


