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• Lattice structures exemplify the design freedom offered by laser 
powder bed fusion (LPBF) additive manufacturing (AM) [6]

• Lattices offer unique capabilities [7], but are hampered by many 
manufacturing, inspection, and post-processing challenges.

Research Gap: The complex relationships between the LPBF process 
parameters and resulting strut characteristics are not well-understood.
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Manufacture: Design and manufacture high-throughput CT inspection 
sample(s) for high-throughput characterization of lattice strut geometry.
Geometry: Characterize  450 strut parameter combinations using rapid, 
high-fidelity, automated CT inspection methodology.
Modeling: Develop statistical and machine learning models to predict 
strut geometry using manufacturing process parameter inputs.

Figure 1. Scales of complexity within AM lattice structures

Laser powder bed fusion (LPBF) additive manufacturing (AM) enables the creation of geometries, such as lattice structures, which are impossible to manufacture using traditional methods. Lattice structures are favored for their
high strength-to-weight ratios [1], tunable and gradable properties [2], and energy absorption capacity [3]. However, due to their small features, tortuous surfaces, and internal defects, which are inextricably linked to
manufacturing parameters, lattice performance is detrimentally impacted [4,5]. Manufacturing strategies for mitigation, and effects on performance are either underdeveloped or not yet fully understood. To address this
knowledge gap, this study focuses on understanding the influence of manufacturing parameters on structural outcomes by modeling the process-structure (PS) relationships in microscale LPBF features. Herein, it is
demonstrated that high-throughput CT-based inspection can enable the creation of statical and machine learning models which can predict geometric characteristics of lattices with up to 98% accuracy.

Results Discussion

Figure 3. Geometry inspection process. a) CT scan part, isolate parameter stack, b) Analyze 
strut geometry through best ellipses, c) Create statistical information about struts for models.

Figure 2. Structure of model predicting strut geometry from manufacturing parameter inputs

1. Lattice strut structure and geometry varies widely (+/- 30% nominal 
in worst cases) due to process parameter variation.

2. Statistical regression models performed well in predicting strut 
geometry. NRMSE <3% in the best cases.

3. Machine learning models equaled or outperformed statistical 
regression models  in nearly all cases, with NRMSE of <2%.

4. Statistical models provide for further intuition into physical drivers of 
observed trends compared to machine learning.

Next Steps/Future Work:
• Incorporate more lattice characteristics into modeling framework

• Microstructural aspects of lattices
• Hardness properties of lattices

• Include mechanical performance of lattices in modeling framework

• Ellipse geometry was modeled 
using a cross-sectional analysis 
and best fit ellipse approach:

• BF ellipse major & minor axis length
• BF ellipse axis ratio & eccentricity
• Cross sectional area
• Area moment of inertia

Geometry Inspection Summary
• Strut geometry was found to 

change significantly as a function 
of processing parameter. 

• Struts were highly non-cylindrical
• No process combination produced 

a consistently cylindrical strut

Geometry Mean Value

N=214

Statistical & Machine Learning Summary
• Process-structure models predicted process with high accuracy across 

a range of processing parameters
• Accuracies of models exceeded >98% in certain cases
• ML performed better than statistical modeling in nearly all cases

• Strut geometry varied significantly, with 
mean major axis values in excess of 50% 
above nominal, but followed a clear trend

• Multiple ML models were developed to test 
relative performance, with varying accuracy

• Full-factorial design of experiment approach 
provided for increased confidence in 
observed trends due to its exhaustive nature

• The developed models can be used for optimization of lattice 
manufacture and are transferable to strut-based lattices of all types.

• Model prediction error assessed using Normalized Root Mean 
Squared Error (NRMSE) to compare across model types. 
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Manufacturing Results Summary
• Struts built for full-factorial (450 

combinations) evaluation of:
• Laser power (5 levels)
• Laser speed (5 levels)
• Hatch spacing (3 levels)
• Strut orientation (6 levels)

• Strut geometry visually varied as a 
function of processing parameter 
(see figure at right)
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Figure 7. Performance comparison of developed models.

Figure 6. Results overview of statistical linear and gaussian process regression models
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Figure 5. Strut geometry maps

Figure 4. Printed CT artifact

Figure 7. Strut geometry 
deviation from nominal
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* Lattice StructuresUnit CellsMicrostructure Struts & TexturePowder Feedstock
0.25 mm 1.0 mm 10 mm200 µm20 µm
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