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Abstract

Laser powder bed fusion (LPBF) additive manufacturing (AM) enables the creation of geometries, such as lattice structures, which are impossible to manufacture using traditional methods. Lattice structures are favored for their
high strength-to-weight ratios [1], tunable and gradable properties [2], and energy absorption capacity [3]. However, due to their small features, tortuous surfaces, and internal defects, which are inextricably linked to
manufacturing parameters, lattice performance is detrimentally impacted [4,5]. Manufacturing strategies for mitigation, and effects on performance are either underdeveloped or not yet fully understood. To address this
knowledge gap, this study focuses on understanding the influence of manufacturing parameters on structural outcomes by modeling the process-structure (PS) relationships in microscale LPBF features. Herein, it is
demonstrated that high-throughput CT-based inspection can enable the creation of statical and machine learning models which can predict geometric characteristics of lattices with up to 98% accuracy.
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manufacturing, inspection, and post-processing challenges. * Laser power (5 levels) * Multiple ML models were developed to test

* Laser speed (5 levels)
* Hatch spacing (3 levels)
e Strut orientation (6 levels)

e Strut geometry visually varied as a e S
function of processing parameter T . NEN S
(see figure at right) Figure 4. Printed CT artifact

Research Gap: The complex relationships between the LPBF process
parameters and resulting strut characteristics are not well-understood.
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observed trends due to its exhaustive nature deviation from nominal

The developed models can be used for optimization of lattice

/\ manufacture and are transferable to strut-based lattices of all types.
. * Ellipse geometry was modeled Geometry Mean Value ' * Model prediction error assessed using Normalized Root Mean
Powder Feedstock Microstructure  Struts & Texture Unit Cells using a cross-sectional analysis 1N£|13_J°r AX'S Length Minor Axis Length Squared Error (NRMSE) to compare across model types.
s s e p—|—) [ ] and best fit ellipse approach: .
-7 -6 -5 -4 -3 -2 -1 . . ] ) W l.Z] ] 2
10 10® 10 A 10 10 * BF ellipse major & minor axis length e 1 X (Vpred—Yerue)
Figure 1. Scales of complexity within AM lattice structures . . . . = 4 NRMSE = |-
* BF ellipse axis ratio & eccentricity > \ n Verue
* Cross sectional area 081 ///
Methodology e Area moment of inertia Axis Ratio 87 - 7 [EMLinear Regression
: : : : . 1.4 mm < N=100 . Bl Gaussian Process
Manufacture: Design and manufacture high-throughput CT inspection Geometry Inspection Summary s \/ = 6 I __ 1 IFINeural Net
sample(s) for high-throughput characterization of lattice strut geometry. * Strut geometry was found to é | an N 4 I I I - |EMEnsemble
. L . . oy . £ = i i mEsSVM
Geometry: Characterize 450 strut parameter combinations using rapid, change significantly as a function > 2 T stdev
high-fidelity, automated CT inspection methodology. of processing parameter. 0.8 hlZ 0 | | . i [ 95% Cl
. —_ : : : : : : o o Q o o o - - : :
Modeling: Develop statistical and machine learning models to predict » Struts were highly non-cylindrical 5 9 g 5 g g Long Axis short Axis Axis Ratio Area
strut geometry using manufacturing process parameter inputs. * No process combination produced P (W) P (W) Figure 7. Performance comparison of developed models.
Mfg. Parameters Strut Geometry a consistently cylindrical strut 80 9/0N | 100 110
% Nomina

Diameter
X-Sec Area

Laser Power

Conclusions

Statistical & Machine Learning Summary Figure 5. Strut geometry maps
* Process-structure models predicted process with high accuracy across 1
a range of processing parameters
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Lattice strut structure and geometry varies widely (+/- 30% nominal
in worst cases) due to process parameter variation.
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* Accuracies of models exceeded >98% in certain cases - : : g
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