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Two- and three-dimensional simulations of

an elastoviscoplastic material in a thin mold-

filling geometry
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Motivation for studying yielding fluids

Yield stress can be seen in wax, whipped cream,
toothpaste, lava, ceramic pastes, and Carbopol




Develop computational models for free-
surface flows of yield stress fluids

Why is this needed?
» Accurate predictions of surface profiles and spreading
dynamics for flowing systems

Current state-of-the-art in production codes:

« Ramp viscosity arbitrarily high to “solidify” a fluid

* Does not accurately preserve the stress state that
develops in the fluid

* One way coupling between fluid and solid codes

We propose developing numerical methods informed by novel
experimental diagnostics that transition from solid-to-fluid, while
accurately predicting the stress and deformation regardless of phase.

2.5 mm shot, 40% injection speed

Green ceramic
processing
shows yield
stress and
both fluid and

solid-like

Target system: solidifying
continuous phase with particles
and droplets (e.g. polyurethane

)



‘ Equations of motion and stress constitutive equations

Momentum and Continuity
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Mold filling geometry: flow between two thin plates

Apparatus dimensions
« Inlet diameter = 0.138 cm
« (x) Width = 15.2 cm
- (¥) Height > Width
« (2) Gap between plates = 0.5 cm

- 'This dimension is not resolved 2D in computations

= Drag force due to unresolved stress needs to be
modeled in some manner




Characterization of Carbopol and parameter fitting
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Small amplitude stress vs. strain curve, gives the
elastic modulus, G.

Other rheological parameters were determined
using a nonlinear least squares fit.

Bingham-Carreau-Yasuda (BCY)
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Characterization of Carbopol and parameter fitting
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- “Fit for constant viscosity Saramito model done with
y <25
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‘ 3D mold filling simulations

Constitutive models

= Bingham-Carreau-Yasuda
(generalized Newtonian)

= Saramito-Oldroyd-B
= Constant viscosity
- Herschel-Buckley (HB)

Computations
= Finite element method in Goma

= Arbitrary Eulerian-Lagrangian
moving mesh framework

- Remeshing done every ~30
timesteps

Validation Experiments
= 0.3 wt.% Carbopol

= 5-20 mL/min flow rate

gravity

Kinetic,

SR capillary BCs

BCs

No mesh
motion

=
- Contact
I'HE ?nglles No
F% ;8? £l penetration,
[y Hrﬁ Tabulated Navier slip
i

inflow BC y
velocity <_ij

X
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Droplet dimensions computed from 3D simulations
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= Droplet height predictions for both flavors of the Saramito accurately capture
droplet height.

> Constant viscosity variant performs a bit better at the highest flow rate considered

= BCY model tends to overestimate droplet height



cim

Droplet dimensions computed from 3D simulations

5 mL/min 10 mL/min 20 mL /min
- BCY O exp. height
10.0 1 . Saramito ¢  exp. width
——— HB-Saramito
7.5 -
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= HB-Saramito model accurately predicts width for 5, 10 mL/min inflow, but

overestimates at higher flow rates.

mL/min) inflow.

BCY model substantially underestimates droplet width at low to moderate (5-10



‘Droplet shape computed from 3D simulations

0.5 in? 1 in?

5 mL/min

10 mL/min

20 mL/min

= Experimental droplet transitions from round triangular as volume is increased.
> For a fixed droplet volume, higher flow rate leads to a rounder droplet.

= The Saramito and HB-Saramito models predict this behavior (though imperfectly).
- BCY model struggles to show transition to a triangular shape at larger volumes.



Comparison experimental shear and velocity maps to
computations

= For the available data, x-

velocity and shear rate from experiment HB-Saramito
computed by the HB-Saramito 5 mL/min, A
model are generally in 7 i

agreement with experimental

values

= Differences manifest near the
inlet region:
> Near-wall velocity is
underestimated

o Computations predict a shear-
rate reversal which is not
observed experimentally

> This indicates slip near the inlet
IS underestimated




‘ Yield coefficient computed by HB-Saramito model

1
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S(o,1y) = max (0:

5 mL/min 10 mL/min

S = 0 indicates solid-like behaviot, S > 0 = fluid-like

Unyielded region (S = 0) appears near the edges of the droplet and grows at the volume
increases

Increasing flow rate associated with a larger degree of fluid-like behavior, particularly near
the fluid inlet.

20 mL/min




‘ 2D mold filling simulations

« 2D computations are substantially cheaper, but

require a model for unresolved stresses — we model
these stresses through a source term on the

momentum equations (Fyrag)

Model for Fyrag calibrated from planar Poiseuille
computations run over a range of VP values,

Uy = (Uy, ty) - N
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Boundary conditions imposed for 2D
simulations are similar to 3D computations

Symmetry condition

No mesh motion

no slip, no
penetration

Tabulated inlet
velocity
Developed stress BC

Free surface

gravity

0.6 4
0.4 . .
kinematic,
-Z::F capillary
.2
0.0 B l ENNEEE
-0.2
Navier slip,
no penetration,
-0.4
\ Dynamic contact
angle
N
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Comparing computed and observed droplet shapes (constant
viscosity Saramito model)

0.5 in? 1 in?

= A
= = 2D with drag model

5 mL/min

10 mL/min

= Accuracy of 2D computations with the drag model is similar to 3D results for less than 1/10
of the computational cost.

20 mL/min

J. McConnell, et al., “Computational modeling and experiments of an elastoviscoplastic
fluid in a thin mold-filling geometry,” to be published, JNNFM, June, 2022




Summary and conclusion

- Both Saramito and HB Saramito models yielded accurate predictions for droplet
height.

= Predicting droplet width is more difficult — both EVP models considered were more
accurate than the BCY model, though neither Saramito-type model was decisively
more accurate than the other.

- Shear rate and horizontal velocity computed from the HB-Saramito model generally
agree with available experimental data.

= Noticeable differences near the fluid inlet likely due to underestimation of local fluid slip on boundaries.

- 2D computations with constant viscosity Saramito model + drag model work well

= Yield droplet shapes comparable to analogous 3D computations at less than 1/10 the
cost.

- Ongoing efforts:
= Hele-Shaw and level set implementations of EVP models
= Computations over a range of fluid properties for the mold filling scenario
= Confined free-surface flows over an obstruction
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‘ Drag model

* Drag model accounts for force due stress caused by
the presence of a shear gradient in the unresolved
dimension

* Included in flow model as a momentum source term
and has the following form:

b—1
Fdra.gj. — auy (\/W)

a, b are fitted parameters, € = 10~%

* Computations for obtaining drag model parameters
are done with the Bingham-Carreau-Yasuda (BCY)
generalized Newtonian model
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Perform computations for a planar Poiseuille system
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Comparing computed and observed blob dimensions (Saramito

model)
5 mL/min 10 mL/min 20 mL /min
= with drag model o exp. height
10.0 1 . Wal P 1 —— without drag model o ¢ exp. width
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= Predicted droplet dimensions are more accurate when
drag model is used for the 10 and 20 mL/min
computations

o 5 mL/min case performs worse with drag model; fitted BCY
model likely overestimates the viscosity for this scenario



19 ‘ Confined free-surface flow around an obstruction

Constitutive model

» Herschel-Bulkley Saramito-Oldroyd-B (EVP) 1/— ggglaemic contact
1 [0 v 1 " _ H Ssa;

Navier slip,
no penetration

» Parameters (0.3% Carbopol):

- T, = 21.35 Pa
n = 0.495,
k = 59.6 Pa-s"

= Cylinder diameter: 10 cm
« Domain width : 2.75 cm

}
IR RS

Kinematic,
capillary

No mesh
Validation Experiments — work in progress motion

Tabulated inlet
velocity

Developed stress BC



0 1 Confined free-surface flow around an obstruction

=
S(o, ry)% = max (U, loral - Tf‘”) ’

‘o'd'-‘

5 mL/min 10 mL/min 20 mL/min

* Yielded regions within the domain shrink and

eventually vanish as the flow rate is increased from 5 to
20 mL/min

= Computations suggest that a bubble forms near the top of
the obstruction at elevated flow rates (>5 mL/min)
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