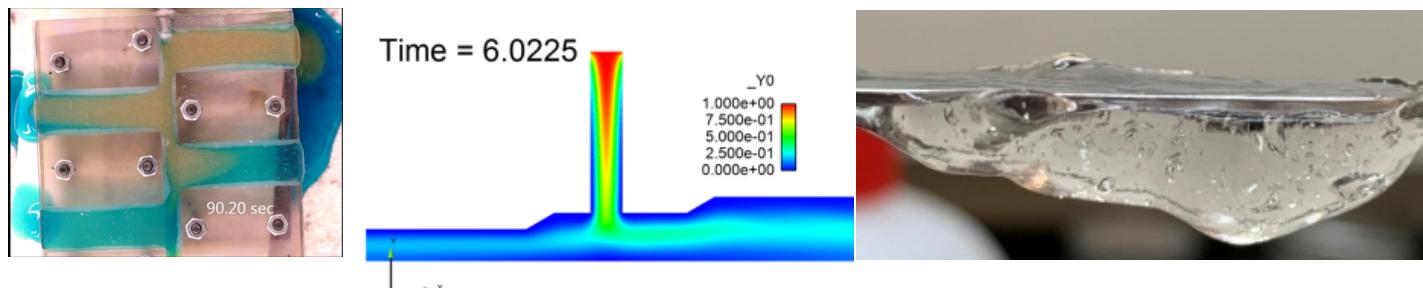


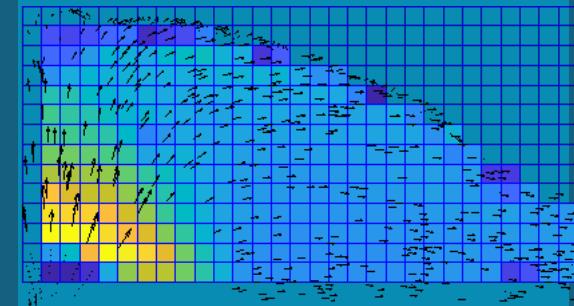
Sandia
National
Laboratories

Two- and three-dimensional simulations of an elastoviscoplastic material in a thin mold-filling geometry



Josh McConnell, Anne Grillet, Rekha Rao
(Sandia National Laboratories)

Weston Ortiz (University of New Mexico)



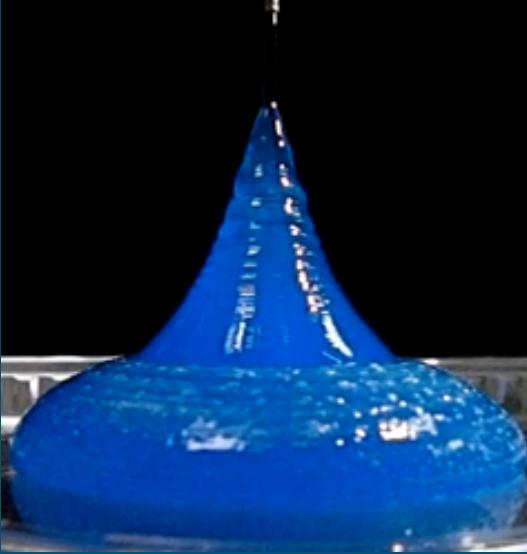
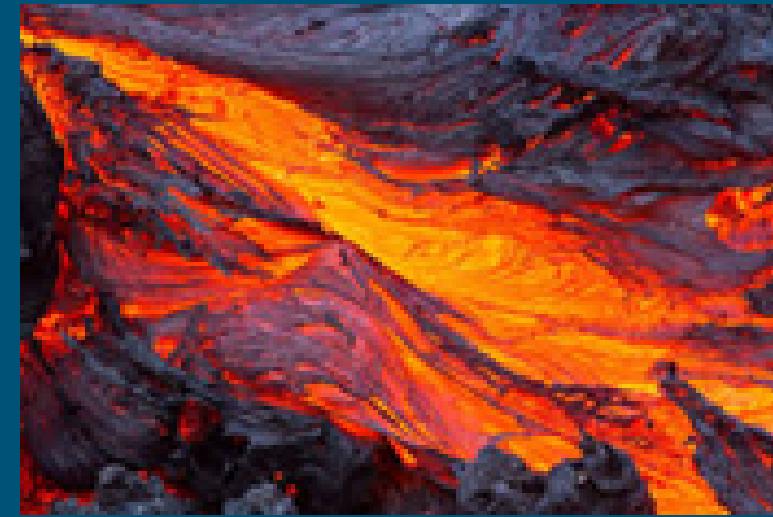
19th U.S. National Congress on Theoretical and Applied Mechanics
Austin, Texas
June 19-24, 2022

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Motivation for studying yielding fluids

1



Yield stress can be seen in wax, whipped cream, toothpaste, lava, ceramic pastes, and Carbopol

Develop computational models for free-surface flows of yield stress fluids

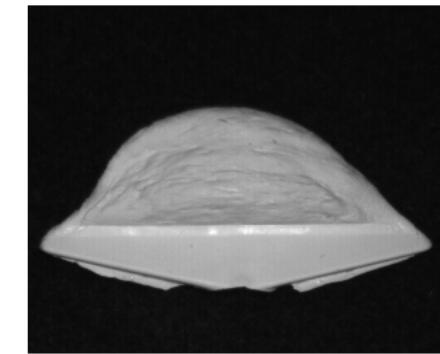
Why is this needed?

- Accurate predictions of surface profiles and spreading dynamics for flowing systems

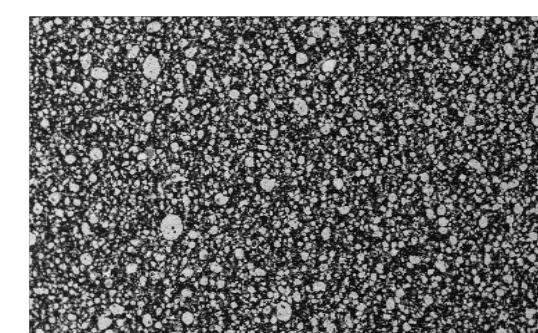
Current state-of-the-art in production codes:

- Ramp viscosity arbitrarily high to “solidify” a fluid
- Does not accurately preserve the stress state that develops in the fluid
- One way coupling between fluid and solid codes

We propose developing numerical methods informed by novel experimental diagnostics that transition from solid-to-fluid, while accurately predicting the stress and deformation regardless of phase.



Green ceramic processing shows yield stress and both fluid and solid-like behavior



Target system: solidifying continuous phase with particles and droplets (e.g. polyurethane foams)

Equations of motion and stress constitutive equations

Momentum and Continuity

$$\rho \left(\frac{\partial \mathbf{u}}{\partial t} + \nabla \cdot \mathbf{u} \mathbf{u} \right) = -\nabla P + \nabla \cdot (2\mu \dot{\gamma}) + \nabla \cdot \boldsymbol{\sigma}$$

$$\nabla \cdot \mathbf{u} = 0$$

Oldroyd-B stress constitutive model + Saramito yield model

$$\frac{1}{G} \left(\frac{\partial \boldsymbol{\sigma}}{\partial t} + \nabla \boldsymbol{\sigma} \right) + \left[\frac{1}{k |\boldsymbol{\sigma}_d|^{n-1}} \right]^{\frac{1}{n}} \mathcal{S}(\boldsymbol{\sigma}, \tau_y) \boldsymbol{\sigma} = 2\dot{\gamma}$$

Herschel-Buckley (HB)-Saramito yield model

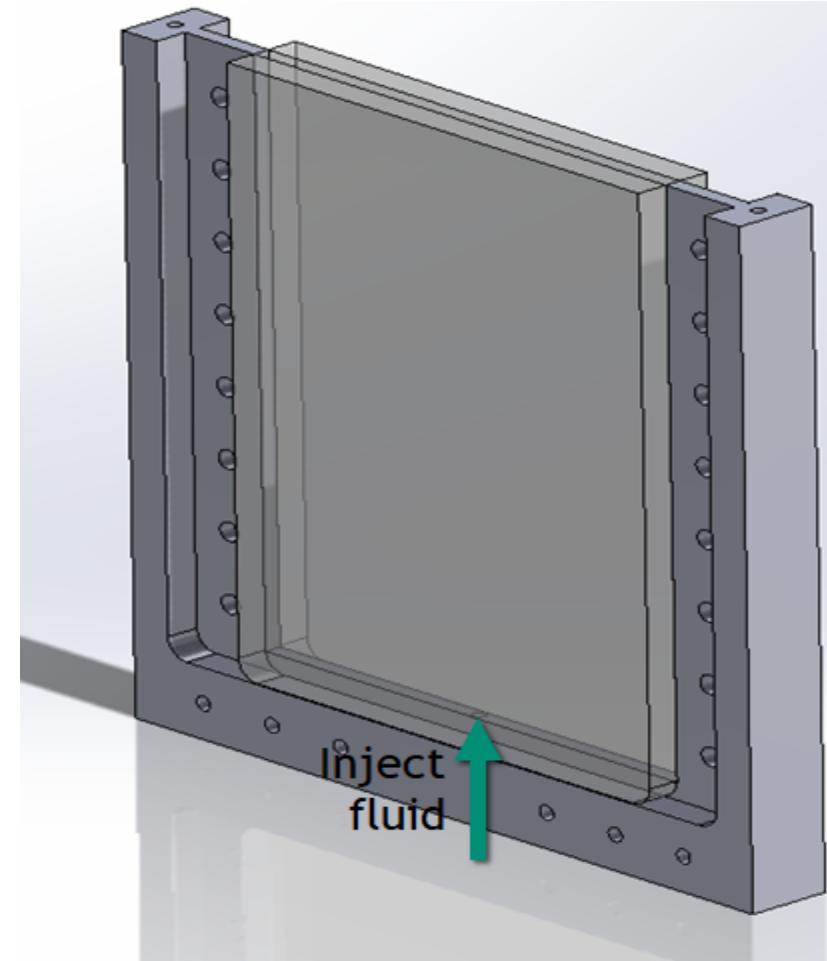
$$\mathcal{S}(\boldsymbol{\sigma}, \tau_y) = \max \left(0, \frac{|\boldsymbol{\sigma}_d| - \tau_y}{|\boldsymbol{\sigma}_d|} \right)^{\frac{1}{n}}$$

Solve with Finite Element Method for \mathbf{u} , P , $\boldsymbol{\sigma}$ and $\dot{\gamma}$ tensors

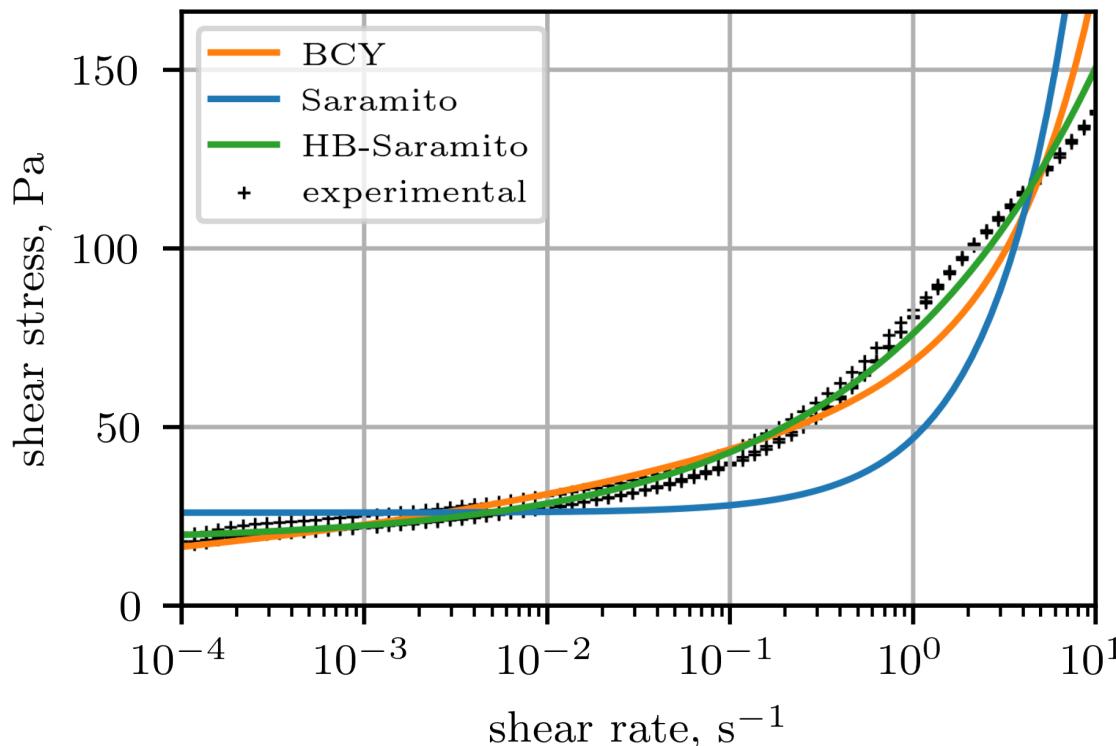
Mold filling geometry: flow between two thin plates

Apparatus dimensions

- Inlet diameter = 0.138 cm
- (x) Width = 15.2 cm
- (y) Height > Width
- (z) Gap between plates = 0.5 cm
 - This dimension is not resolved 2D in computations
 - Drag force due to unresolved stress needs to be modeled in some manner



Characterization of Carbopol and parameter fitting



Bingham-Carreau-Yasuda (BCY)

$$\mu = \mu_\infty + \left[\mu_0 - \mu_\infty + \tau_y \frac{1 - e^{-F\dot{\gamma}}}{\dot{\gamma}} \right] [1 + (b\dot{\gamma}^a)]^{\frac{n-1}{a}}$$

μ_0 , (Pa·s)	μ_∞ , (Pa·s)	b (s⁻¹)	a	n	τ_y , (Pa)	R^2
217.15	0.018	3.112	0.966	0.190	31.21	0.954

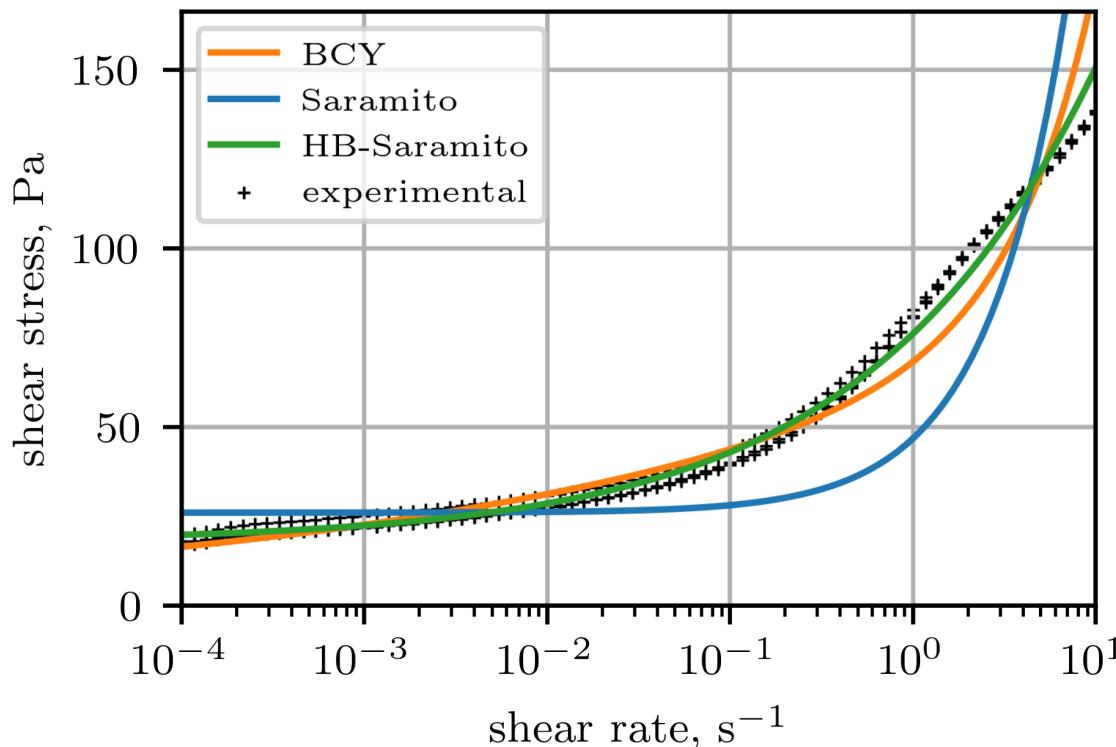
Saramito-Oldroyd-B

$$\frac{1}{G} \left(\frac{\partial \boldsymbol{\sigma}}{\partial t} + \nabla \cdot \boldsymbol{\sigma} \right) + \left[\frac{1}{k|\boldsymbol{\sigma}_d|^{n-1}} \right]^{\frac{1}{n}} \mathcal{S}(\boldsymbol{\sigma}, \tau_y) \boldsymbol{\sigma} = 2\dot{\gamma}$$

	n	k , (Pa·s ⁿ)	τ_y , (Pa)	G , (s)	R^2
Saramito	== 1	52.85	32.10	576.9	0.889 ^(*)
HB-Saramito	0.368	58.9	17.89	576.9	0.991

- Small amplitude stress vs. strain curve, gives the elastic modulus, G .
- Other rheological parameters were determined using a nonlinear least squares fit.

Characterization of Carbopol and parameter fitting



Bingham-Carreau-Yasuda (BCY)

$$\mu = \mu_\infty + \left[\mu_0 - \mu_\infty + \tau_y \frac{1 - e^{-F\dot{\gamma}}}{\dot{\gamma}} \right] [1 + (b\dot{\gamma}^a)]^{\frac{n-1}{a}}$$

μ_0 , (Pa·s)	μ_∞ , (Pa·s)	b (s⁻¹)	a	n	τ_y , (Pa)	R^2
217.15	0.018	3.112	0.966	0.190	31.21	0.954

Saramito-Oldroyd-B

$$\frac{1}{G} \left(\frac{\partial \boldsymbol{\sigma}}{\partial t} + \nabla \cdot \boldsymbol{\sigma} \right) + \left[\frac{1}{k|\boldsymbol{\sigma}_d|^{n-1}} \right]^{\frac{1}{n}} \mathcal{S}(\boldsymbol{\sigma}, \tau_y) \boldsymbol{\sigma} = 2\dot{\gamma}$$

	n	k , (Pa·s ⁿ)	τ_y , (Pa)	G , (s)	R^2
Saramito	== 1	52.85	32.10	576.9	0.889^(*)
HB-Saramito	0.368	58.9	17.89	576.9	0.991

- Fit for constant viscosity Saramito model done with $\dot{\gamma} \leq 2$ s⁻¹

3D mold filling simulations

Constitutive models

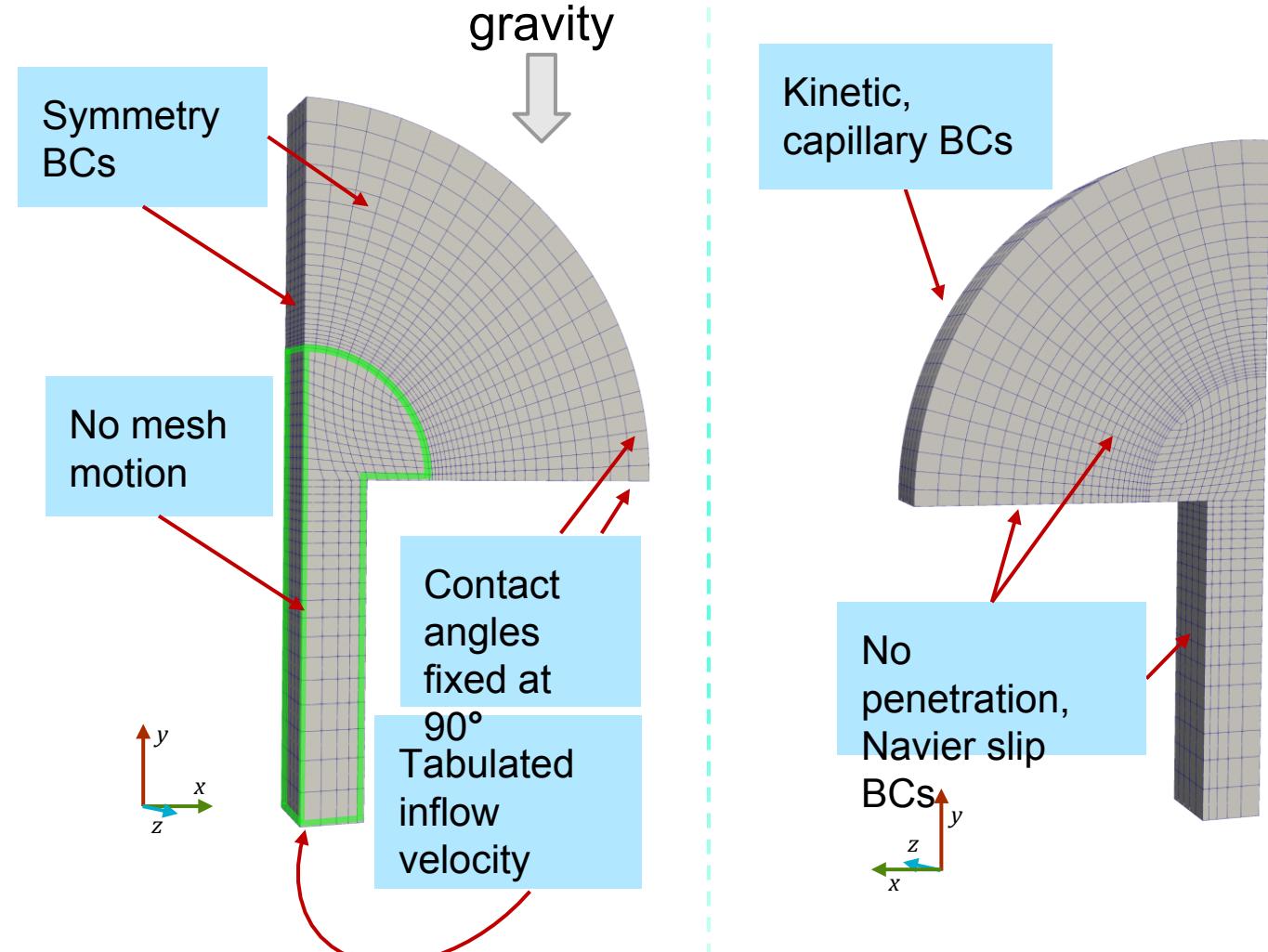
- Bingham-Carreau-Yasuda (generalized Newtonian)
- Saramito-Oldroyd-B
 - Constant viscosity
 - Herschel-Buckley (HB)

Computations

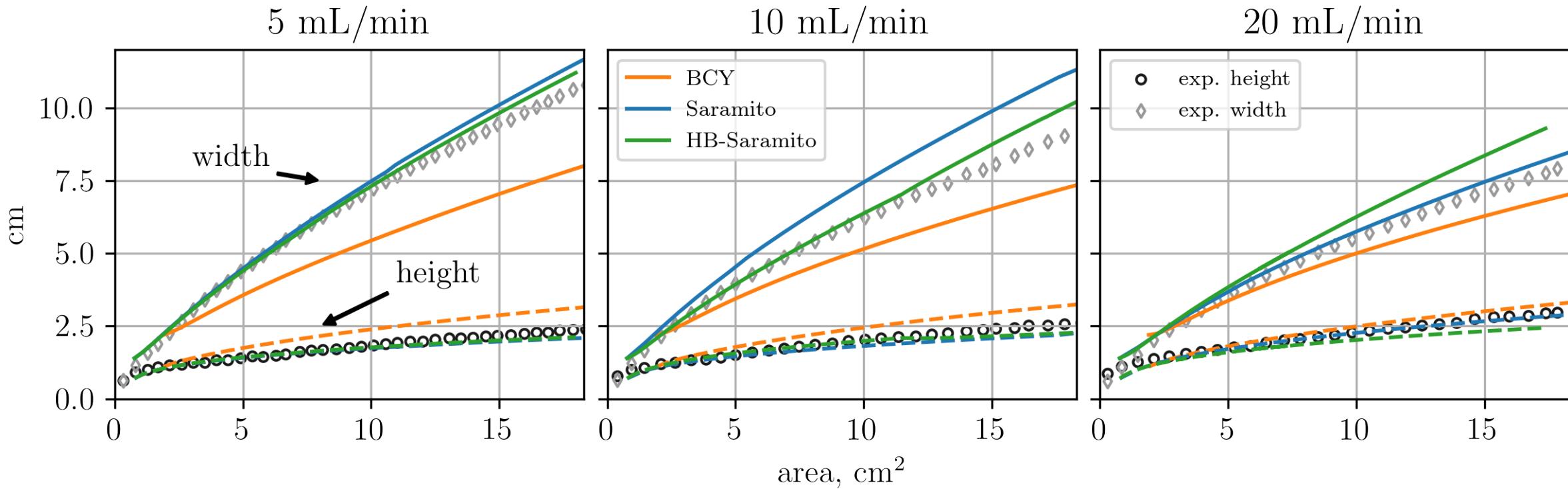
- Finite element method in Goma
- Arbitrary Eulerian-Lagrangian moving mesh framework
- Remeshing done every \sim 30 timesteps

Validation Experiments

- 0.3 wt.% Carbopol
- 5-20 mL/min flow rate

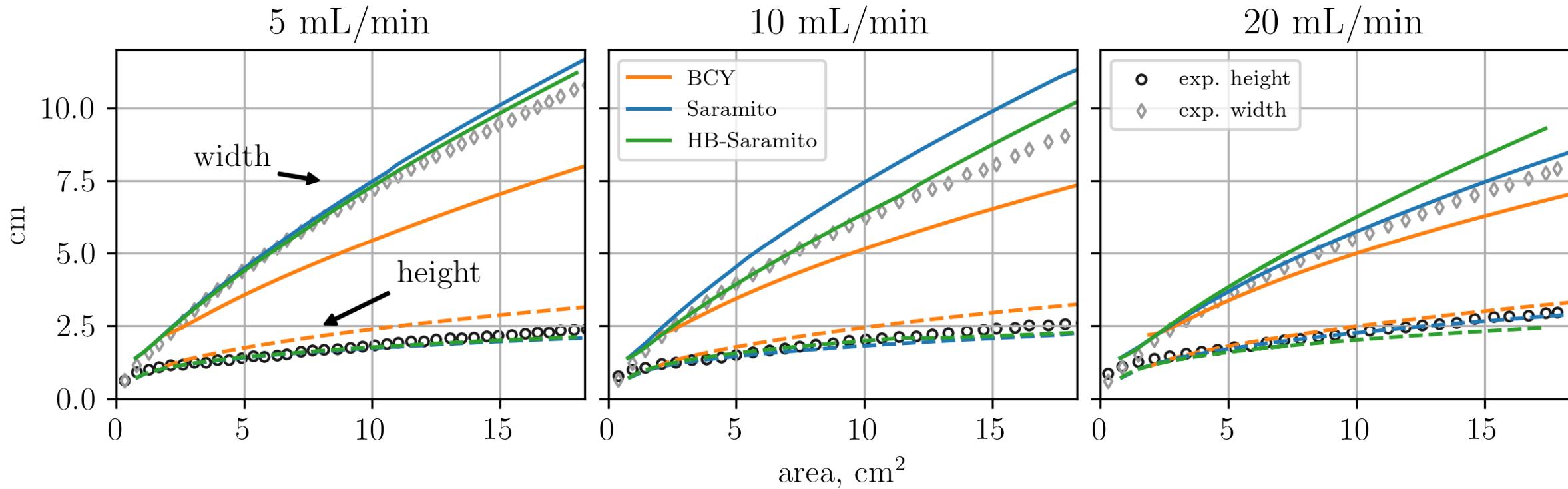


Droplet dimensions computed from 3D simulations



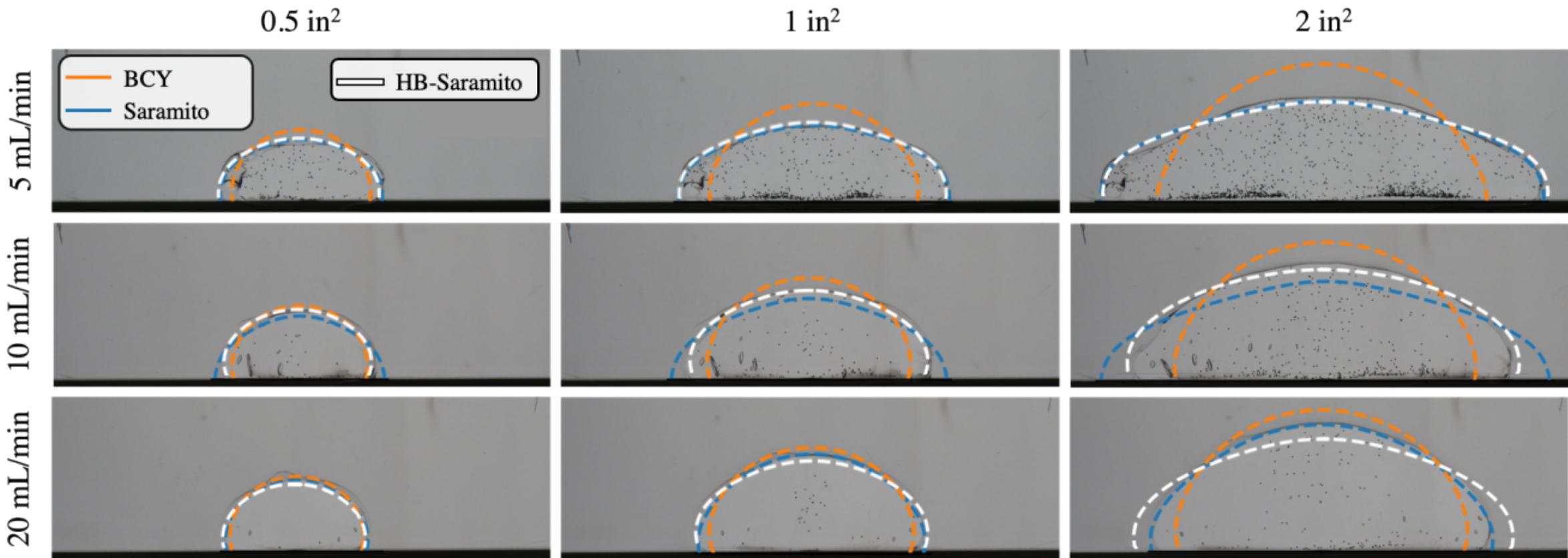
- Droplet height predictions for both flavors of the Saramito accurately capture droplet height.
 - Constant viscosity variant performs a bit better at the highest flow rate considered
- BCY model tends to overestimate droplet height

Droplet dimensions computed from 3D simulations



- HB-Saramito model accurately predicts width for 5, 10 mL/min inflow, but overestimates at higher flow rates.
- BCY model substantially underestimates droplet width at low to moderate (5-10 mL/min) inflow.

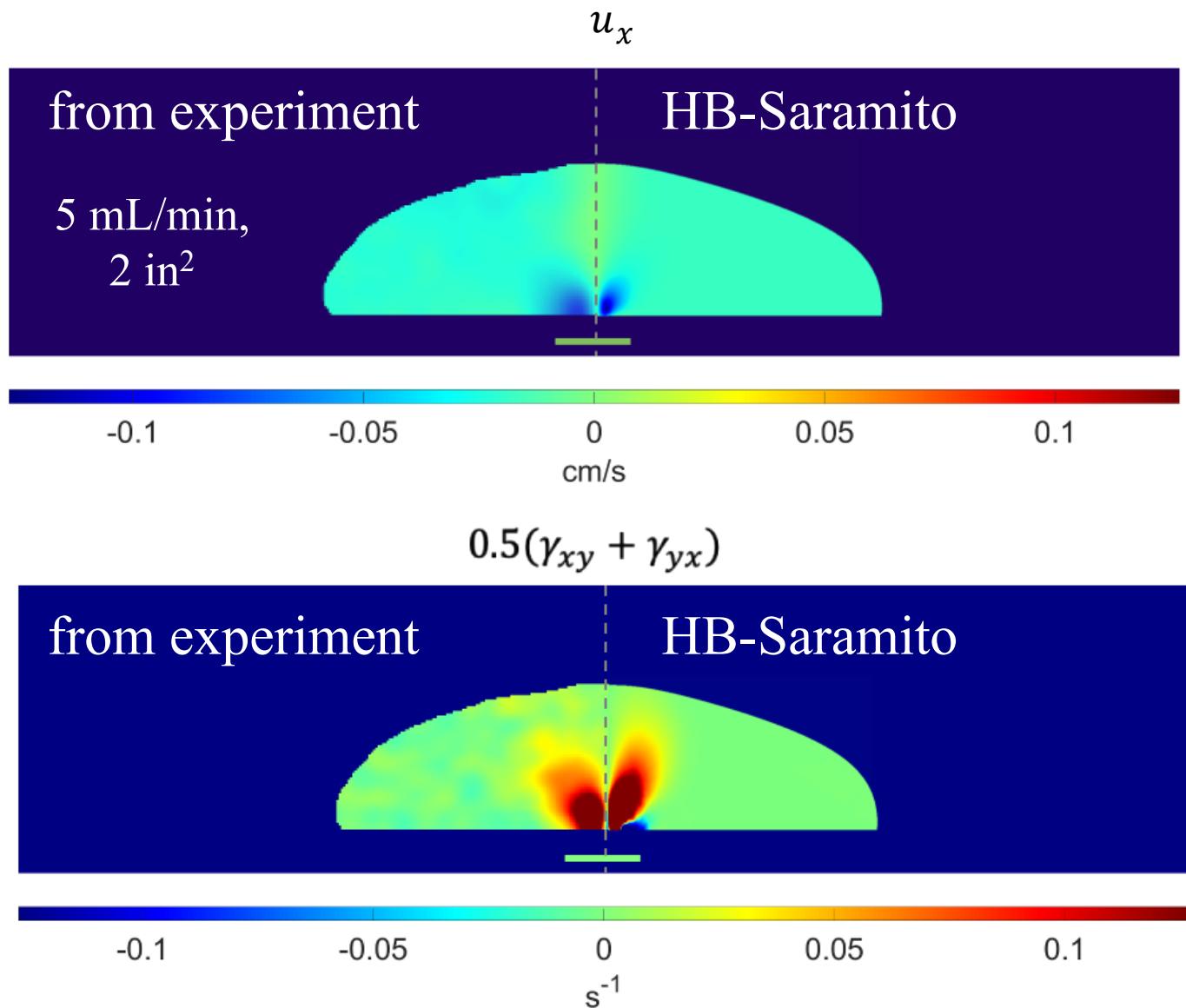
Droplet shape computed from 3D simulations



- Experimental droplet transitions from round triangular as volume is increased.
 - For a fixed droplet volume, higher flow rate leads to a rounder droplet.
- The Saramito and HB-Saramito models predict this behavior (though imperfectly).
 - BCY model struggles to show transition to a triangular shape at larger volumes.

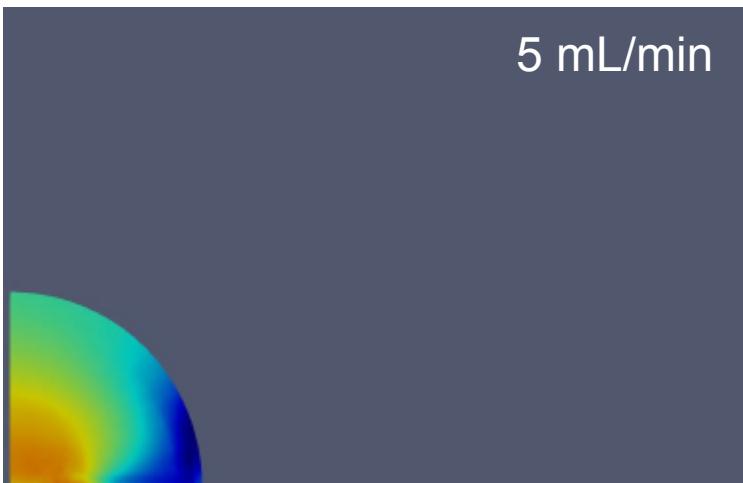
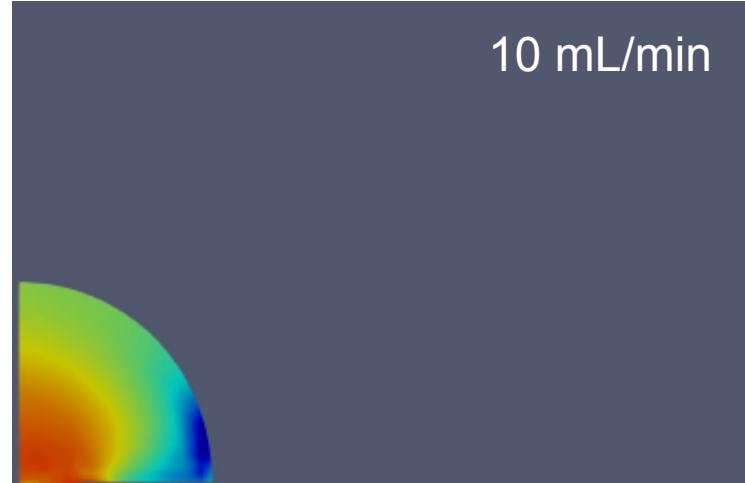
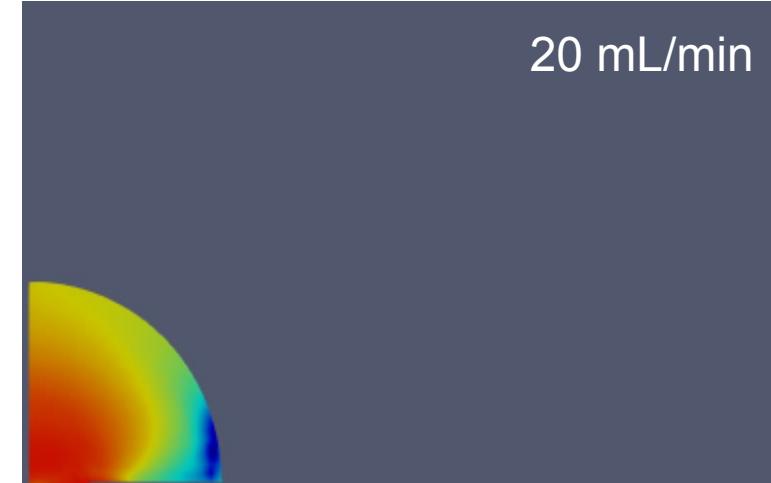
Comparison experimental shear and velocity maps to computations

- For the available data, x-velocity and shear rate computed by the HB-Saramito model are generally in agreement with experimental values
- Differences manifest near the inlet region:
 - Near-wall velocity is underestimated
 - Computations predict a shear-rate reversal which is not observed experimentally
 - This indicates slip near the inlet is underestimated



Yield coefficient computed by HB-Saramito model

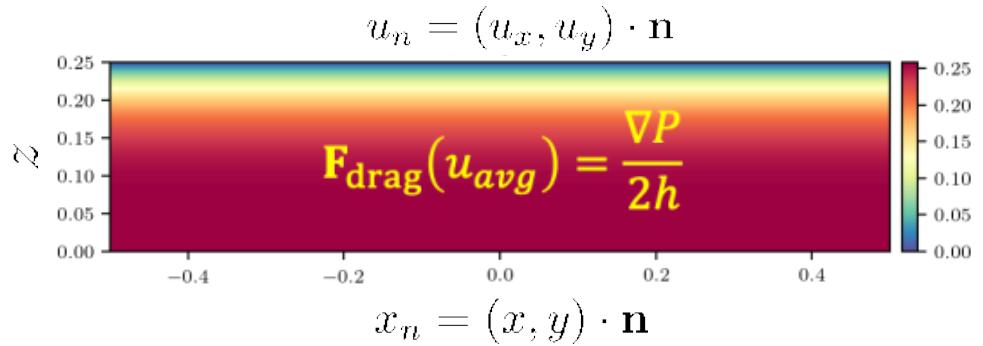
$$S(\sigma, \tau_y) = \max \left(0, \frac{|\sigma_d| - \tau_y}{|\sigma_d|} \right)^{\frac{1}{n}}$$



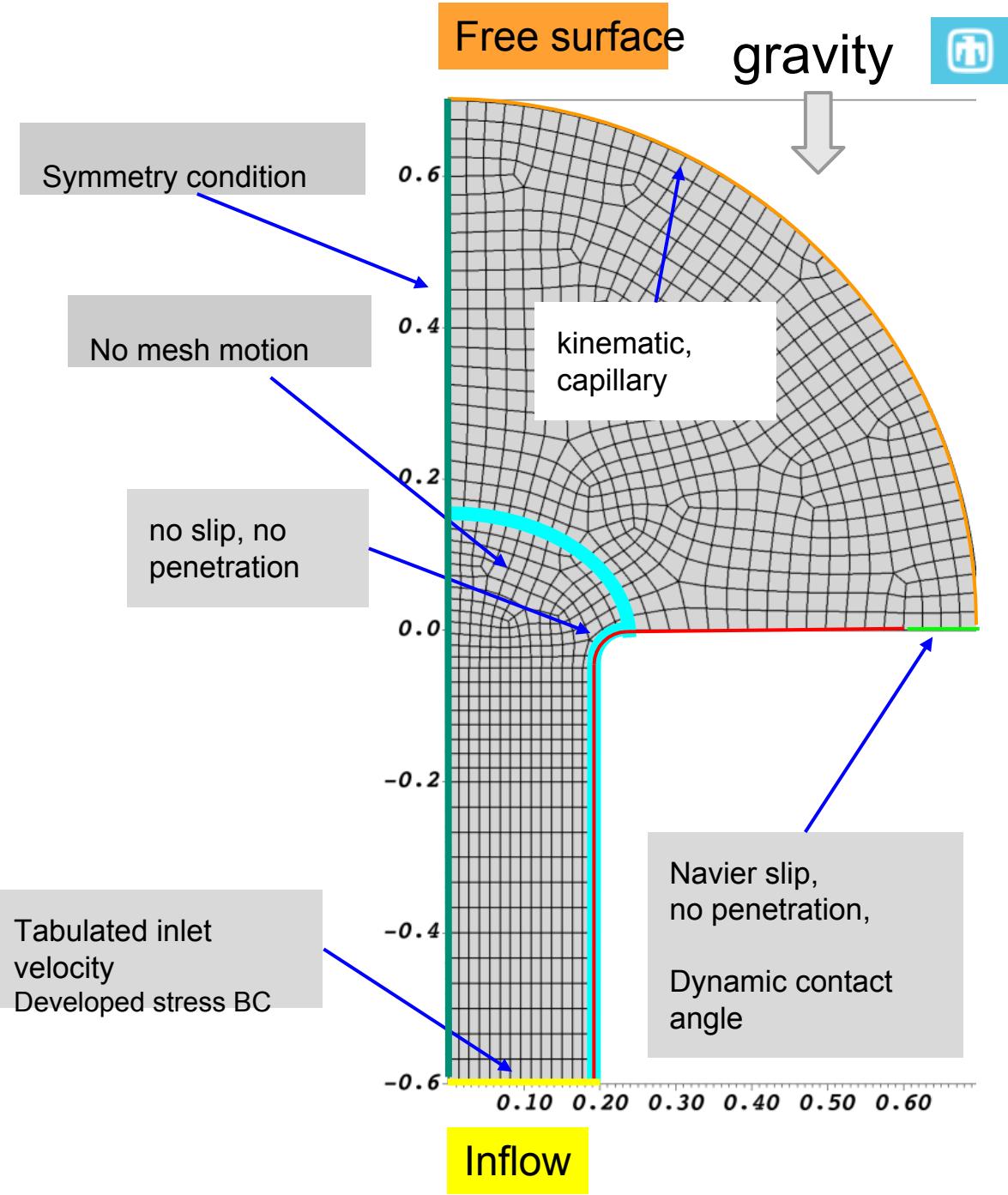
- $S = 0$ indicates solid-like behavior, $S > 0 \rightarrow$ fluid-like
- Unyielded region ($S = 0$) appears near the edges of the droplet and grows as the volume increases
- Increasing flow rate is associated with a larger degree of fluid-like behavior, particularly near the fluid inlet.

2D mold filling simulations

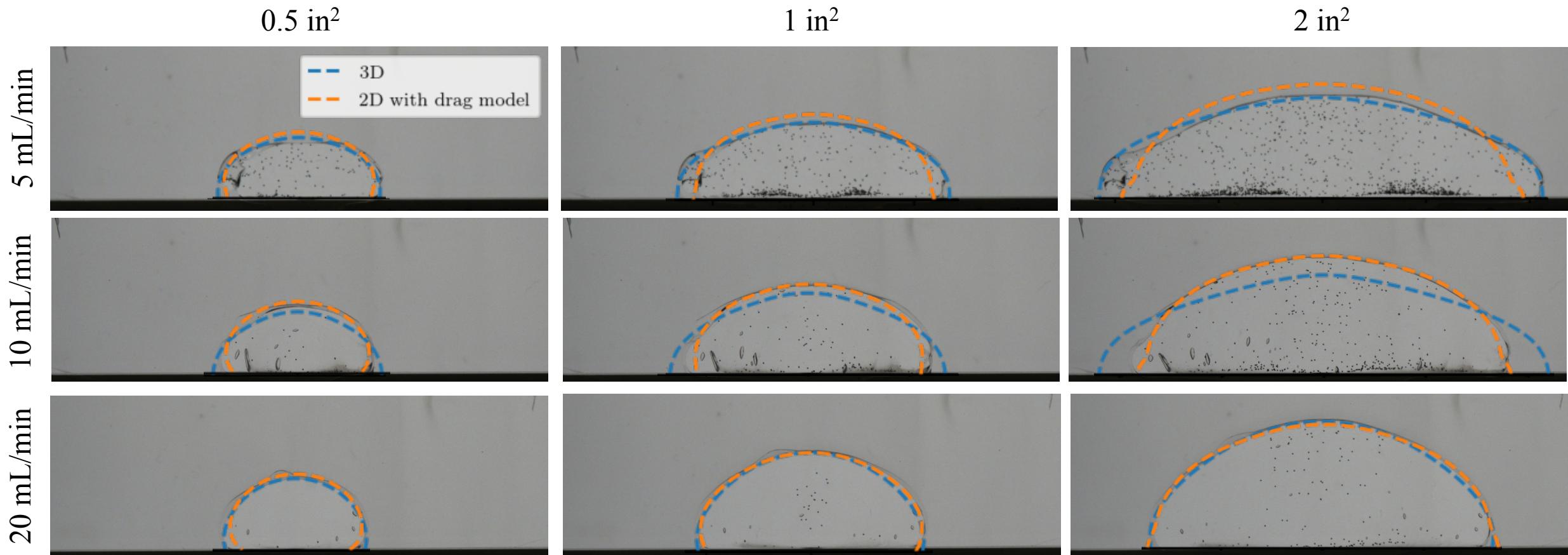
- 2D computations are substantially cheaper, but require a model for unresolved stresses – we model these stresses through a source term on the momentum equations (\mathbf{F}_{drag})
- Model for \mathbf{F}_{drag} calibrated from planar Poiseuille computations run over a range of ∇P values,



- Boundary conditions imposed for 2D simulations are similar to 3D computations



Comparing computed and observed droplet shapes (constant viscosity Saramito model)



- Accuracy of 2D computations with the drag model is similar to 3D results for less than 1/10 of the computational cost.

Summary and conclusion

- Both Saramito and HB Saramito models yielded accurate predictions for droplet height.
 - Predicting droplet width is more difficult – both EVP models considered were more accurate than the BCY model, though neither Saramito-type model was decisively more accurate than the other.
 - Shear rate and horizontal velocity computed from the HB-Saramito model generally agree with available experimental data.
 - Noticeable differences near the fluid inlet likely due to underestimation of local fluid slip on boundaries.
- 2D computations with constant viscosity Saramito model + drag model work well
 - Yield droplet shapes comparable to analogous 3D computations at less than 1/10 the cost.
- Ongoing efforts:
 - Hele-Shaw and level set implementations of EVP models
 - Computations over a range of fluid properties for the mold filling scenario
 - Confined free-surface flows over an obstruction

Extra slides

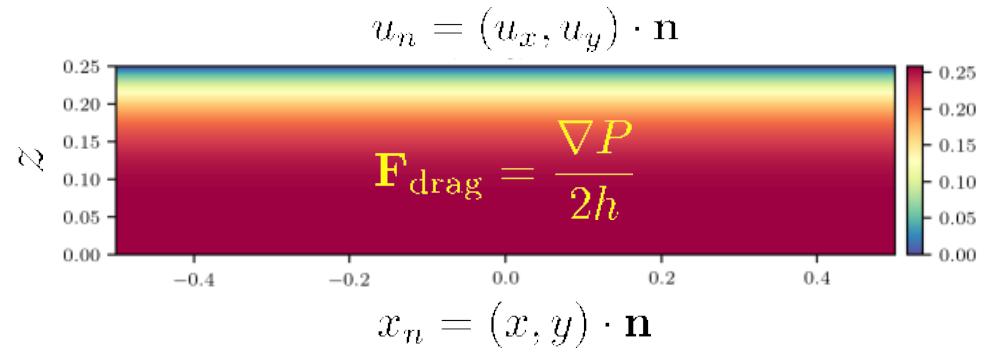
Drag model

- Drag model accounts for force due stress caused by the presence of a shear gradient in the unresolved dimension
- Included in flow model as a momentum source term and has the following form:

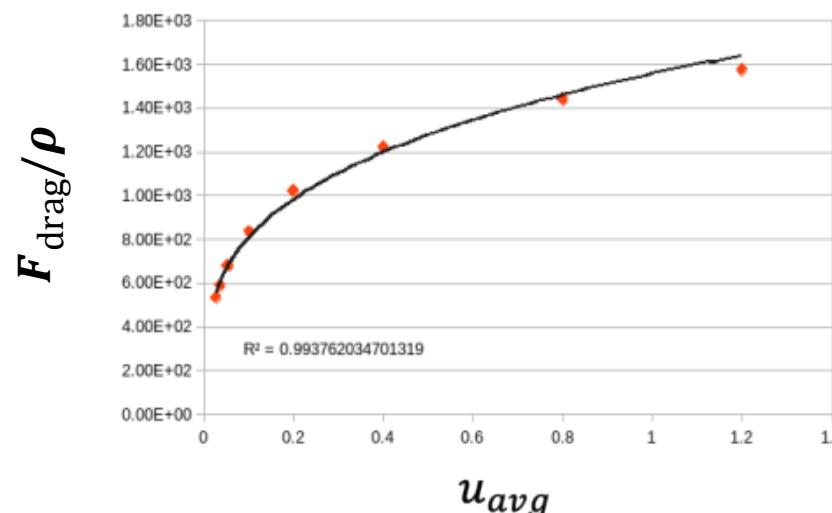
$$\mathbf{F}_{\text{drag},i} = a \mathbf{u}_i \left(\sqrt{|\mathbf{u}|^2 + \epsilon} \right)^{b-1}$$

a, b are fitted parameters, $\epsilon = 10^{-4}$

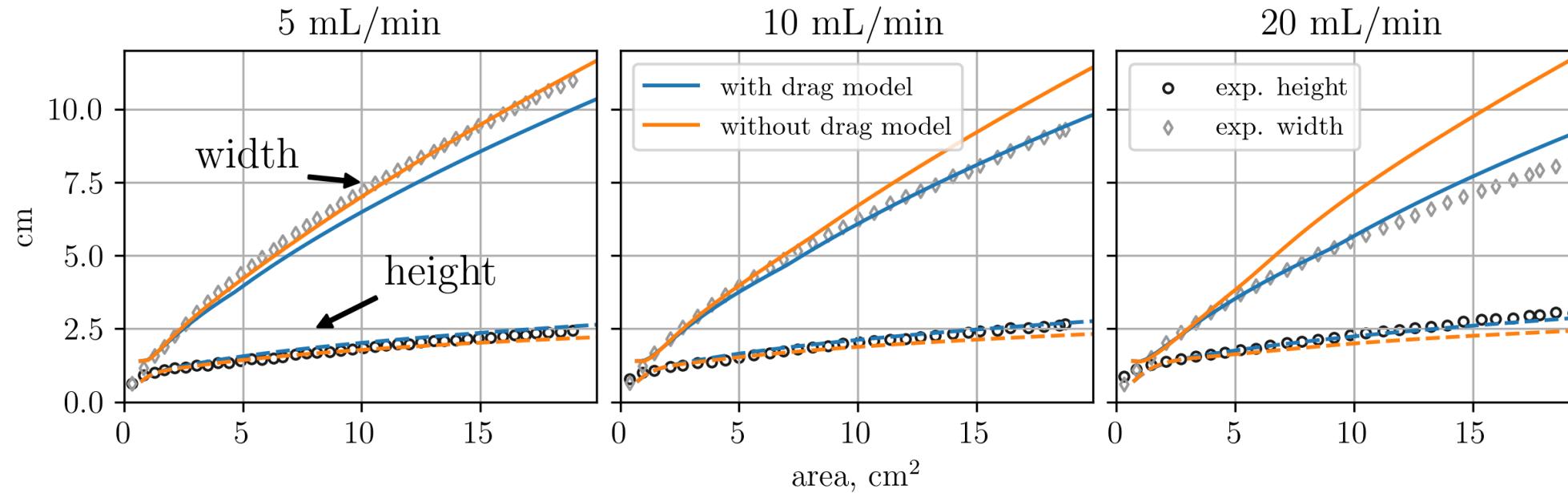
- Computations for obtaining drag model parameters are done with the Bingham-Carreau-Yasuda (BCY) generalized Newtonian model



1. Perform computations for a planar Poiseuille system over a range of ∇P values,
2. compute u_{avg} and average force due to shear stress, \mathbf{F}_{drag}
3. Obtain values of a, b via regression to get $\mathbf{F}_{\text{drag}}(u_{avg}; a, b)$



Comparing computed and observed blob dimensions (Saramito model)



- Predicted droplet dimensions are more accurate when drag model is used for the 10 and 20 mL/min computations
 - 5 mL/min case performs worse with drag model; fitted BCY model likely overestimates the viscosity for this scenario

Confined free-surface flow around an obstruction

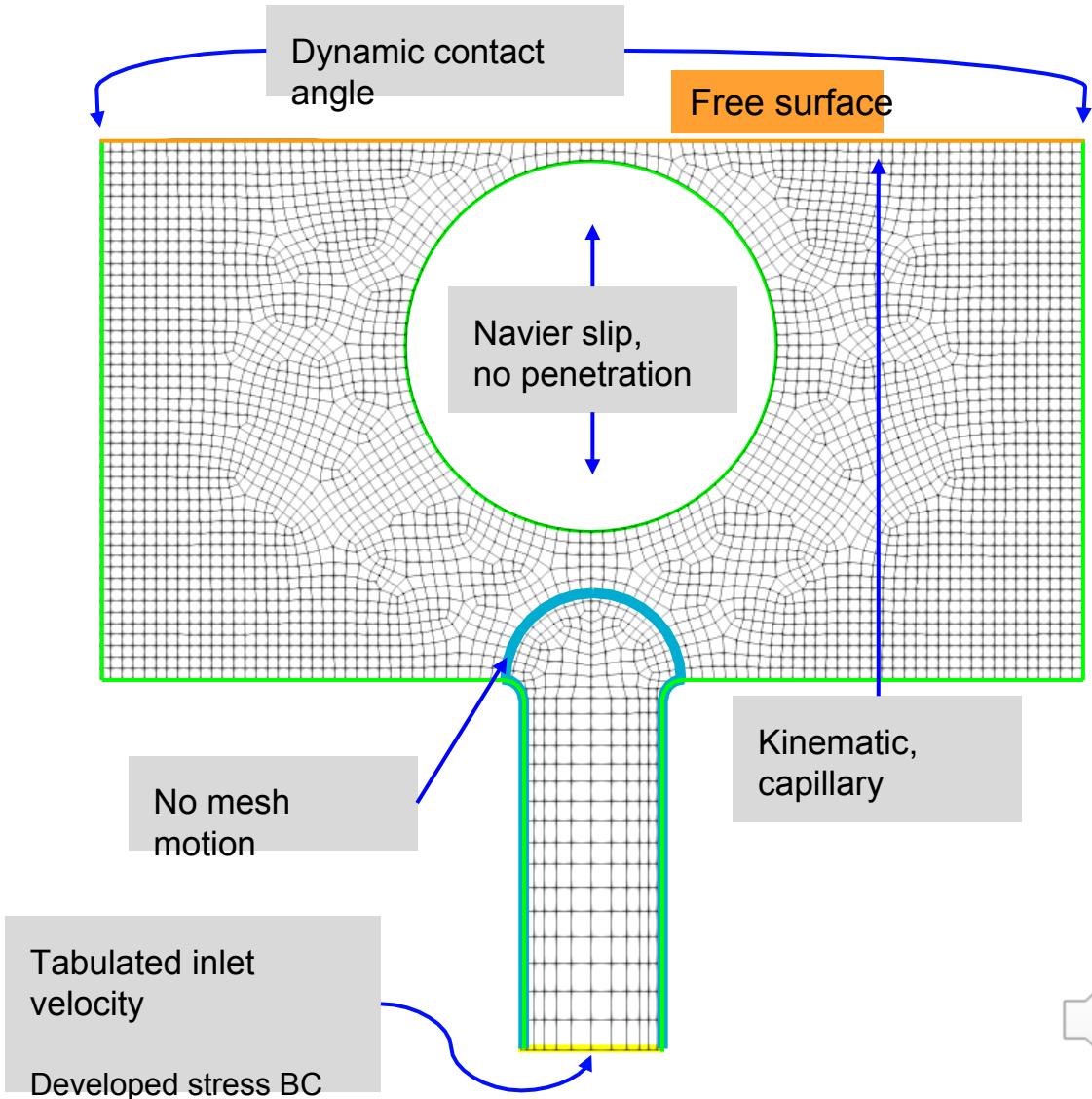
Constitutive model

- Herschel-Bulkley Saramito-Oldroyd-B (EVP)

$$\frac{1}{G} \left(\frac{\partial \sigma}{\partial t} + \nabla \cdot \sigma \right) + \left[\frac{1}{k|\sigma_d|^{n-1}} S(\sigma, \tau_y) \right]^{\frac{1}{n}} \sigma = 2\dot{\gamma}$$

- Parameters (0.3% Carbopol):
 - $\tau_y = 21.35$ Pa
 - $n = 0.495$,
 - $k = 59.6$ Pa·s n
- Cylinder diameter: 10 cm
- Domain width : 2.75 cm

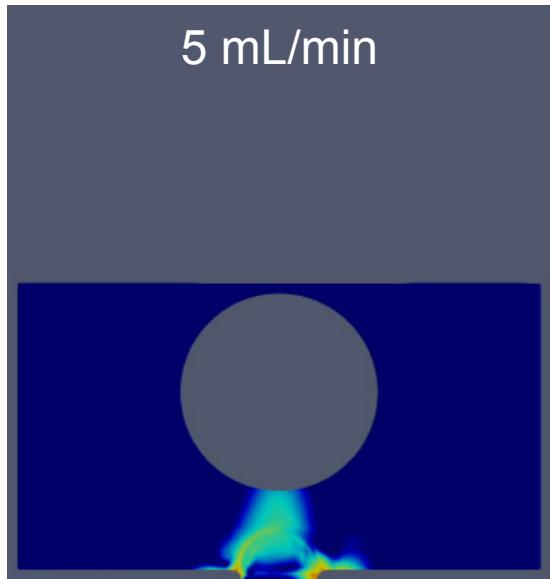
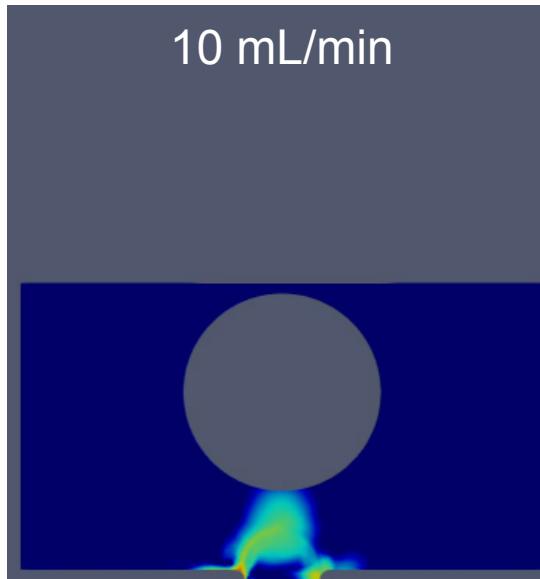
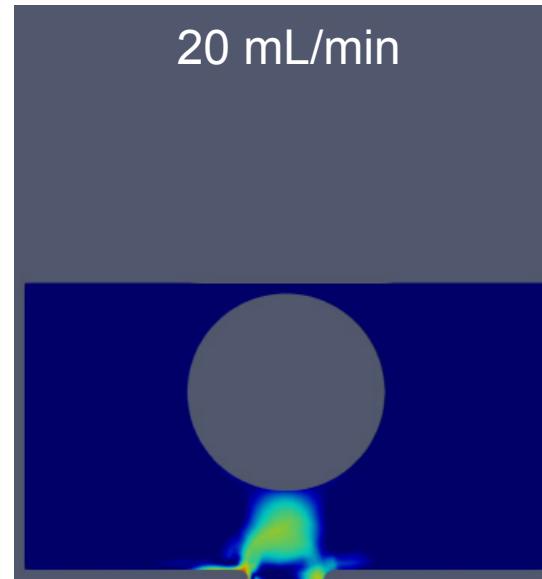
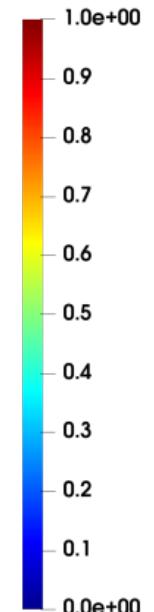
Validation Experiments – *work in progress*



Confined free-surface flow around an obstruction

$$S(\sigma, \tau_y)^{\frac{1}{n}} = \max \left(0, \frac{|\sigma_d| - \tau_y}{|\sigma_d|} \right)^{\frac{1}{n}}$$

$$S(\sigma, \tau_y)^{\frac{1}{n}}$$



- Yielded regions within the domain shrink and eventually vanish as the flow rate is increased from 5 to 20 mL/min
- Computations suggest that a bubble forms near the top of the obstruction at elevated flow rates (>5 mL/min)

