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• Acid gases are commonly found in complex chemical 
streams, and metal-organic frameworks (MOFs) are 
being evaluated for their separation and removal [1,2] 

• Ab initio molecular dynamics (AIMD) are applied to 
identify fundamental acid gas-framework interactions 
in ternary gas mixtures 

• Vienna ab initio Simulation Package (VASP)
• Generalized Gradient approximation with PBEsol functional [3]
• Plane wave basis set with Projector Augmented Wave (PAW) psuedopotentials
• Dispersion corrections treated by DFT-D3 method with Becke-Johnson Damping 
• AIMD protocol: NVE thermalization at 300 K followed by NVT for 10 ps [4,5]

Y-DOBDC Unit Cell Model
Atom Colors: O (red), H (white), C (brown), Y* (teal) 

*can be substituted for any RE metal

Average System Adsorption

Temperature Effects

• Ab initio molecular dynamics simulations of multi-component acid gas mixtures were used to
identify reactivity of acid gases with metal and linker sites

• Calculated average adsorption energies were similar for all MOFs despite having different metal-
site adsorption

• Nanoconfinement inside MOF lowers average adsorption energy
• Adsorption site analysis shows that linker-gas interactions can be greater than metal-gas

interactions, especially if they are able to create multiple hydrogen bonds
• Higher temperature simulations show stable adsorption up to 700K

Rare Earth 
Metal Simulations/RE (#) Configurations (#) Temperature (K)

Eu, Tb, Y, Yb 
3 3 300
1 1 500
1 1 700

5 simulations for 4 DOBDC MOF structures

• Simulations show MOFs have selective adsorption, 
even with similar average adsorption energies

• Eu and Tb has strongest SO2 adsorption
• NO2 has large variability; strongest in Yb, though not 

with metal site
• HONO, formed from NO2 deprotonation reaction, has 

much smaller adsorption than NO2
• H2O binds most to metal sites and has largest 

adsorption energy

# 
G

as
 b

on
de

d 
to

 R
E

 M
et

al

kJ/mol Reference 
System

Gas-Gas
Interactions? Y Eu Tb Yb

EB-BG Gas Mixture No -79 ±
14

-87 ±
13

-97 ±
3

-98 ±
6

EB-IG
Individual 

Gases Yes -59 ±
22

-92 ±
3

-89 ±
5

-84 ±
9

EB-GM. Metal
Individual 

Gases N/A -65 ±
21

-73 ±
14

-68 ±
23

-63 ±
23
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• Results are used to design new materials for acid gas separation and adsorption based on binding 
energies and reactive intermediates identified via AIMD trajectories 

• Provides a road map for the application of advance computation for materials design

• Future work: Investigating MOF degradation pathways, looking at effect of functional groups
on MOFs
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• 4 H2O, 4 NO2 and 4 SO2 molecules in MOF
• Three unique geometries generated with PACKMOL
• Three geometries calculated at 300 K, one at 500 K and 700 K
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Binding relative to bulk gas Binding relative to gas molecules Average binding of gas molecule

Average calculated Adsorption Energies

kJ/mol Y Eu Tb Yb
H2O -45 ± 27 -115 ± 7 -112 ± 3 -95 ± 16

NO2 -65 ± 70 -93 ± 8 -71 ± 5 -148 ± 78
HONO -22 ± 41 -29 ± 22 -10 ± 23 -19 ± 12
SO2 -61 ± 31 -102 ± 27 -98 ± 7 -59 ± 9
Average -53 ± 8 -83 ± 46 -89 ± 28 -57 ± 40

Calculated average gas binding energies show greater adsorption than metal site

Simulations revealed four common adsorption sites that have different MOF-Gas interactions

Linker-bridge Pore

Metal

Linker

kJ/mol Y Eu Tb Yb Average
Pore 0.4 -0.2 3 8 3 ± 3
Linker -50 -87 -60 -41 -60 ± 17
Linker-Bridge -74 -130 -31 -111 -112 ± 23
Metal -88 -91 -93 -88 -90 ± 2

kJ/mol Y Eu Tb Yb Average

Pore -15 -34 -18 -29 -24 ± 8
Linker -44 -63 -53 -41 -50 ± 9
Linker-Bridge -44 -66 -68 -50 -58 ± 9
Metal -46 -69 -47 -42 -51 ± 11

kJ/mol Y Eu Tb Yb Average

Pore -20 -17 -17 -21 -19 ± 2
Linker -65 -71 -69 -69 -69 ± 3
Linker-Bridge -22 -89 -49 -85 -61 ± 25
Metal -61 -66 -65 -60 -63 ± 3

H2O

NO2

SO2

References

kJ/mol Y Eu Tb Yb

Temp (K) 500 700 500 700 500 700 500 700
EB-Mix -86 -60 -90 -50 -41 -73 -53 -53
EB-Ind -74 N/A -89 -10 -18 N/A -35 -38
H2O -107 -95 -113 -11 64 -54 -83 -206
NO2 -101 -27 -63 61 -10 -89 71 -1
HONO -74 -32 -32 N/A N/A 17 -160 11
SO2 -91 -24 -125 44 19 -33 -16 -14

• Average adsorption energies decrease
with increasing temperature

• Adsorption energies depend on molecule
configuration in MOF

• Strong adsorption energies at 500K
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