

MELCOR for High Temperature Gas-cooled and Fluoride High Temperature Reactor Modeling

MELCOR Workshop June 13-17, 2021

PRESENTED BY

Brad Beeny

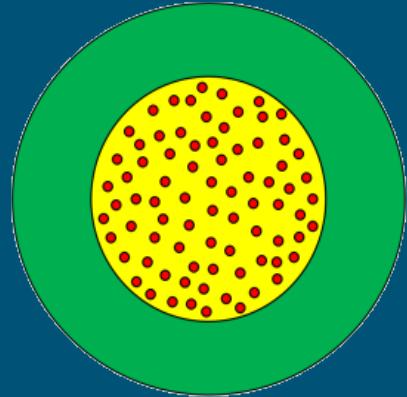
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

MELCOR HTGR and FHR Modeling and Development Thermal Hydraulics – Practice/Exercises

COR thermal hydraulics input structures and best practice recommendations

- Global
- Support
- Heat transfer (conduction, convection)
- Components and materials (FU/FUXM, MX, and RF)
- Point reactor kinetics

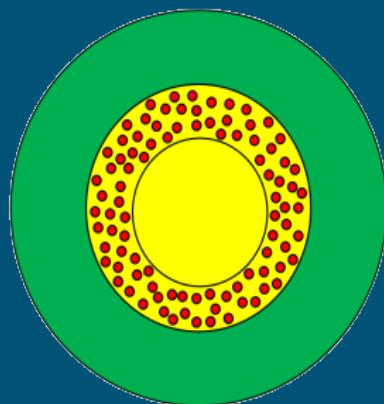
COR thermal hydraulics exercises

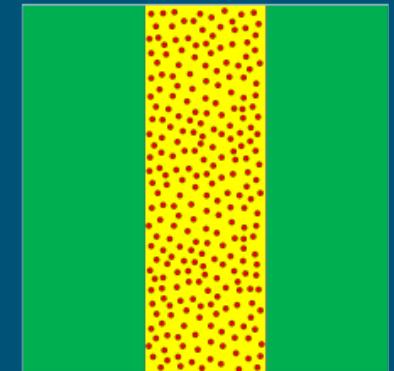

- PBR COR nodalization and components/materials configuration
- PBR point reactor kinetics demonstration

Output processing

Conclusions

...Inputs and Best Practices...


Conventional
Pebble Fuel
Element
(HTGR/PBR)


TRISO

Fuel (FU)

Annular Pebble
Fuel Element
(FHR)

Prismatic Fuel
Element
(HTGR/PMR)

GRAPHITE

Fuel Extra Material (FUXM)

GRAPHITE

Matrix (MX)

COR_RT and COR_GP entail global COR inputs for PBR, PMR, and FHR reactor types

- COR_RT declares reactor type and permits access to special PBR, PMR, or FHR models and capabilities
- COR_GP declares geometric parameters useful for thermal hydraulics and heat transfer calculations

Use 'PBR' on COR_RT for pebble bed reactor or FHR types, use 'PMR' on COR_RT for prismatic reactor types

- Permits access to certain applicable code thermal hydraulics and heat transfer models/capabilities, e.g:
 - Proper effective conductivity model for MX component
 - Proper conduction heat transfer logic (intercell, intracell)
 - Proper Nusselt number correlations
- Exposes MX and RF for configuration
- Presence of FLiBe with COR_RT declaration of PBR implies FHR (may also use 'FHR' on COR_RT)

Geometric parameters on COR_GP are similar to those for PWR/BWR with different interpretations

RFUEL – Fuel outer radius – Use a pebble (PBR/FHR) or compact (PMR) fueled zone radius

RCLAD – Matrix outer radius – Use a pebble (PBR/FHR) unfueled zone radius or an equivalent graphite web radius (PMR)

DRGAP – FU/MX gap – If any gap exists, specify its thickness (may only apply to PMR, factors into gap resistance)

Support logic requires that non-supporting (NS) transmits load (self and like NS above) to support below

- FU and MX are non-supporting
- RF is non-supporting
- FU, MX, and RF must be arranged in COR cells so that they rely on SS below for support

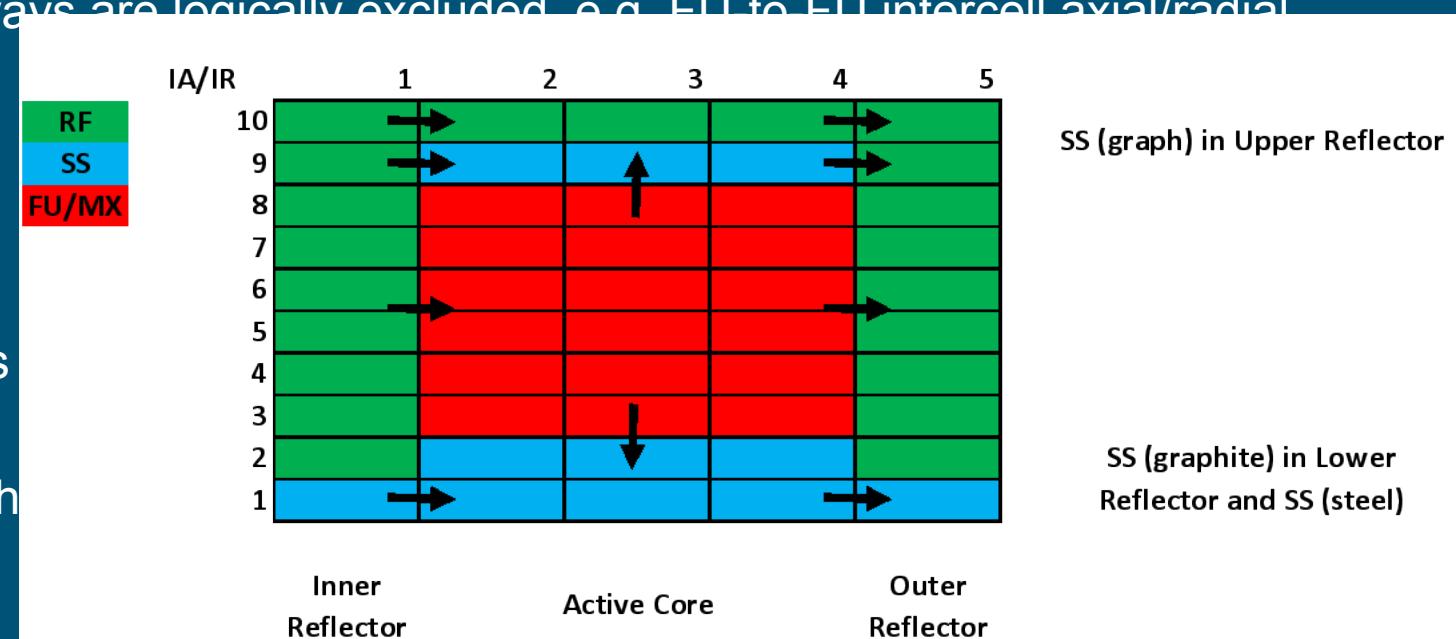
Some support problems arise naturally from HTGR core layout

- Top reflector that hangs over an active core (RF over FU/MX with no SS)
- Active core that sits atop bottom reflectors (FU/MX over RF with no SS)
- Easily remedied with incorporation of graphite-bearing SS between RF and MX

COR_SS and COR_UDSS allows definition of SS support rules with graphite as the material

Generally, best practice is to avoid mixing SS with MX-bearing or RF-bearing COR cells if possible

Inputs and Practices – Heat Transfer



COR nodalization to facilitate conduction

- COR_ZP and COR_RP define axial level and radial ring boundaries as always
- COR mass and surface area records indicate which cells bear which components
- FU/MX collocation implies FU/MX intracell conduction
- Intercell conduction (MX-to-MX, MX-to-RF, RF-to-MX, MX-to-SS, SS-to-MX, RF-to-SS, SS-to-RF, RF-to-RF, SS-to-SS)
- COR SC1507 disables cell component volume fraction scaling for radial conduction
- Physically impossible conduction pathways are logically excluded e.g. E1 to E11 intercell axial/conduction for PBRs

Other best practices

- Use RF in cells that comprise reflectors
- Use FU and MX only in active core cells
- Use SS for core support structures
- SS (graphite) can behave like RF (graphite)

Effective conductivity and porosity

- COR_TKE applies to PBR/FHR and PMR, but utilized differently pending RTYPE
- PORCHAN for PMR only and should reflect the hexagonal fuel element block porosity due to coolant hole perforation
- DBLK, BLKGAP for PMR
- Note the TF option

COR_TKE – Core Effective Thermal Conductance

Optional for PBR and PMR.

This is a new record recognized for the PBR and PMR COR types that can be used to specify the effective bed conductance (PBR) or radial core conductance (PMR). This model has been implemented in MELCOR by adding a Zehner-Schlunder-Bauer model for pebble bed thermal conductance and a Tanaka-Chisaka porosity model for the block radial conductivity model in PMRs.

The input parameters are

(1) TKETF

Name of tabular function to be used for effective radial bed conductivity. If 'NO' is entered, no TF used. If, present, the tabular function is used instead of the internal conductivity models.

(type = character, default = "", units = none)

(2) PORCHAN

Effective block porosity to use in the Tanaka-Chisaka model for effective radial conductivity for

(type = real, default = 0.0, units = none)

(3) DBLK

Effective size of the graphite block for the gap model for effective radial conductivity of **PMR**.

(type = real, default = 1.0, units = m)

(4) BLKGAP

Gap width between graphite blocks for the gap model for effective radial conductivity of **PMR**.

(type = real, default = 0.0, units = m)

Effective conductivity for MX

PBR/FHR porosity:

is

- COR_ZP PORDP by axial level, or
- COR_CPOR by COR cell
 - Both connect to same variables **PMR**.
 - Used for packed bed porosity (blockage)
 - Used for effective conductivity
- Default to PD porosity on COR_ZP in absence of COR_CPOR

Effective conductivity and porosity

- PBR/FHR invokes an effective conductivity model that has a notion of porosity

COR_CPOR – Porosity by core cell

Optional.

(1) NUMSTR

Number of table records.

(type = integer, default = none, units = none)

The following data are input as a table with length NUMSTR

(1) NSTR

Table record index.

(type = integer, default = none, units = none)

(2) IA

The axial level number...

*(type = integer / character*7, default = none, units = none)* *(type = real, default = none, units = none)*

(3) IR

The radial ring number...

*(type = integer / character*7, default = none, units = none)*

(4) CPOR

Porosity value

(type = real, default = 0.0, units = none)

COR_ZP – Axial Level Parameters

Required.

This record specifies various data for all axial levels:

(1) NAXL

Total number of axial levels in the core and lower plenum.

(type = integer, default = none, units = none)

...

(4) PORDP

Porosity of particulate debris for all cells in the given axial level IA. The value must be nonnegative and < 1.0.

Boundary conduction

- COR_BCP configures core structure to core radial boundary HS conduction
- Between an outer core ring (e.g. w/ RF or SS) and a radial boundary HS (e.g. made of steel or graphite)

COR_BCP – Core Boundary Conduction Parameters

Optional..

This record specifies parameters for calculating conduction from the outer core ring to the boundary heat structures specified on record COR_ZP...

(1) **ICBCD**
...name of component that conducts to boundary heat structures...
(type = Integer/character, default = none, units = none)

(2) **MATBCD**
...gap material for conduction...
(type = Character, default = none, units = none)

(3) **DXBCD**
gap thickness
(type = Real, default = none, units = m)

(4) **CDFBCD**
Boundary conduction thermal diffusion constant
(type = Real, default = none, units = m²Ks^{1/2}/J)

Optional...

(5)

CFTSFW

...switch...CF or TF
(type = character, default = none, units = none)

(6)

CFTFNAM

...TF or CF name defining new thermal conductivity calculation for MATBCD...
(type = Character, default = none, units = none)

Note:

- MATBCD any NCG gas or MP material, but the user could optionally change THC rule to CF/TF (likely the best route for FHR)
- DXBCD might reflect a gap between a reflector and core barrel or perhaps part of a riser region
- CDFBCD supposed to mitigate oscillations from numerically explicit coupling of COR to HS across core boundary

Inputs and Practices – Components and Materials

Fuel and Reflector component

- Masses entered through COR_KFU and COR_KRF
- FU surface area entered on COR_SA ; RF surface area entered on COR_RFA (channel and bypass)
- RF equivalent diameters entered on COR_RFD
- Special RF orientation/geometry information entered on COR_RFG

FU primary material is UO₂

FUXM on COR_FUM

RF materials on COR_RFMs

- Global specification, or
- Cell-by-cell specification

COR_RFG – Reflector Geometry Record	(6)	IGEOMRF
Optional, processed only for PBR and PMR. Geometry flag		
This record specifies the reflector geometry		
<i>(type = integer, default = none, units = m)</i>		
(1) NUMSTR	(7)	FACRF
Number of table records.		The factor to split the thermal
<i>(type = integer, default = none, units = none)</i>		conductances...
...		<i>(type = integer, default = none, units = none)</i>
(4) RADI		
Reflector channel-side radius...		
<i>(type = real, default = none, units = m)</i>		
(5) THKRF		
Reflector thickness...		
<i>(type = real, default = none, units = m)</i>		

Matrix component

- The UDM capability (MP) should define a new primary material templated to graphite (to include built-in oxidation)
 - MP_ID declares material long name, the identity as COR-USER-METAL and the material short name
 - MP_BHVR templates the new material to graphite and implicitly invokes built-in oxidation models
- COR_MXM should reference the short name of that UDM
- COR_NMAT should specify the mass of UDM
- COR_SA should specify MX surface area and COR_EDR should specify MX equivalent diameter

! Long name = PBRGRAPH, a generic oxidizable COR material, short name = PBRG

! MATNAM USERCORMATTYP MPSHORT

MP_ID PBRGRAPH COR-USER-METAL PBRG

! TEMPMAT

MP_BHVR GRAPHITE

...

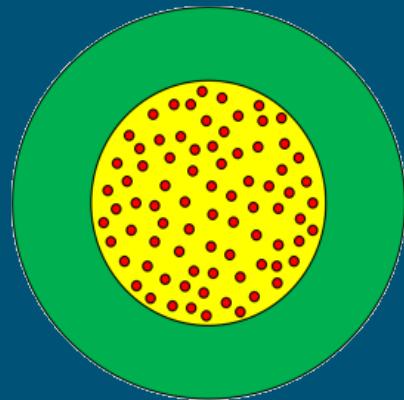
COR_MXM PBRG *! invoke short name from MP*

COR_PKMXX records configure point kinetics parameters:

- COR_PKM01 activates the point kinetics model and configures the start time and initial power level
- COR_PKM02 configures external reactivity inputs and an optional neutron source
- COR_PKM03 configures default or user-supplied feedback models
 - Doppler
 - Fuel density
 - Moderator density

COR_TAVG defines regions of core cells over which temperature averages are taken for feedback calculations

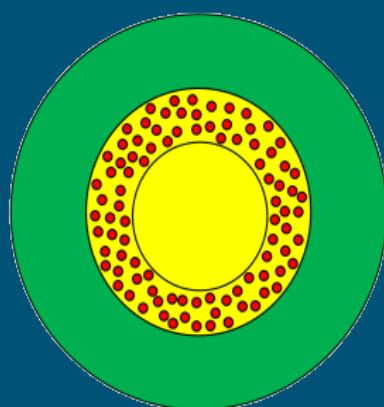
Complement of COR SCs set kinetics and feedback model parameters (COR SC 1404-1406)


SC1404 has temperature feedback coefficients for Doppler, fuel density, and moderator density

SC1405 has delayed neutron group decay constants and relative abundances

SC1406 has miscellaneous nuclear kinetics data

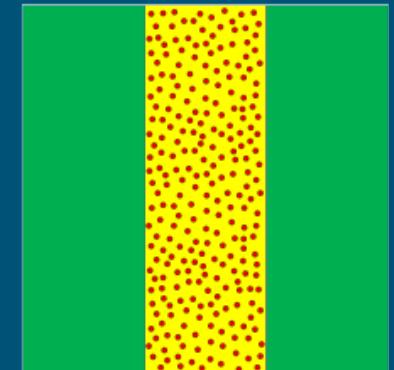
...Exercise 1 – COR Nodalization...


Conventional
Pebble Fuel
Element
(HTGR/PBR)

TRISO

Fuel (FU)

Annular Pebble
Fuel Element
(FHR)


GRAPHITE

Fuel Extra Material (FUXM)

GRAPHITE

Matrix (MX)

Prismatic Fuel
Element
(HTGR/PMR)

Exercise 1 – COR Nodalization

Stipulate a PBMR-400 pebble bed core with 27 axial levels and 8 rings

- Nodalization resolution was historically motivated by code-to-code benchmark studies of this particular design
- Active core spans IA=6-27, IR=2-6 with a known $P(r,z)$ power profile
- Core features inner, outer, upper, and lower reflectors
- To facilitate core heat transfer calculations...
 - Where and how to situate FU and MX?
 - Where and how to situate RF?
 - Where and how to utilize SS to facilitate core support?
 - What COR material substitutions/manipulations are required

```

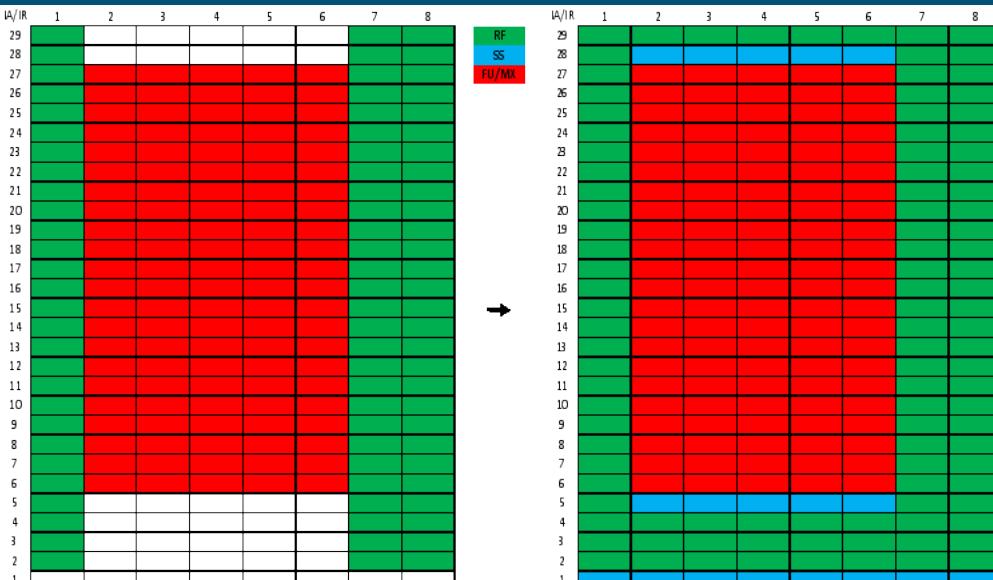

! Axial level input
COR_2P 29 12 D2 PORDF IHSA FPOW
1 -4.35 0.35 0.39 *COR-RAD-BND-A1* 0.0
2 -4.0 1.0 0.20 *COR-RAD-BND-A2* 0.0
3 -3.0 1.0 0.20 *COR-RAD-BND-A3* 0.0
4 -2.0 1.0 0.20 *COR-RAD-BND-A4* 0.0
5 -1.0 1.0 0.20 *COR-RAD-BND-A5* 0.0
6 0.0 0.5 0.39 *COR-RAD-BND-A6* 0.173
7 0.5 0.5 0.39 *COR-RAD-BND-A7* 0.222
8 1.0 0.5 0.39 *COR-RAD-BND-A8* 0.285
9 1.5 0.5 0.39 *COR-RAD-BND-A9* 0.355
10 2.0 0.5 0.39 *COR-RAD-BND-A10* 0.434
11 2.5 0.5 0.39 *COR-RAD-BND-A11* 0.524
12 3.0 0.5 0.39 *COR-RAD-BND-A12* 0.628
13 3.5 0.5 0.39 *COR-RAD-BND-A13* 0.748
14 4.0 0.5 0.39 *COR-RAD-BND-A14* 0.886
15 4.5 0.5 0.39 *COR-RAD-BND-A15* 1.040
16 5.0 0.5 0.39 *COR-RAD-BND-A16* 1.212
17 5.5 0.5 0.39 *COR-RAD-BND-A17* 1.394
18 6.0 0.5 0.39 *COR-RAD-BND-A18* 1.579
19 6.5 0.5 0.39 *COR-RAD-BND-A19* 1.760
20 7.0 0.5 0.39 *COR-RAD-BND-A20* 1.886
21 7.5 0.5 0.39 *COR-RAD-BND-A21* 1.958
22 8.0 0.5 0.39 *COR-RAD-BND-A22* 1.927
23 8.5 0.5 0.39 *COR-RAD-BND-A23* 1.757
24 9.0 0.5 0.39 *COR-RAD-BND-A24* 1.428
25 9.5 0.5 0.39 *COR-RAD-BND-A25* 0.997
26 10.0 0.5 0.39 *COR-RAD-BND-A26* 0.655
27 10.5 0.5 0.39 *COR-RAD-BND-A27* 0.388
28 11.0 0.5 0.39 *COR-RAD-BND-A28* 0.0
29 11.5 1.5 0.2 *COR-RAD-BND-A29* 0.0

! Radial ring input
COR_RP 8 !RINGR IHSR ICFLHF ICFCHN ICFBYP FPOW
1 1.0 'TOP-PLATE-R1' NO 'FLDIRCH' 'FLDIRBY' 0.0
2 1.17 'TOP-PLATE-R2' NO 'FLDIRCH' 'FLDIRBY' 1.137
3 1.34 'TOP-PLATE-R3' NO 'FLDIRCH' 'FLDIRBY' 1.014
4 1.51 'TOP-PLATE-R4' NO 'FLDIRCH' 'FLDIRBY' 0.953
5 1.68 'TOP-PLATE-R5' NO 'FLDIRCH' 'FLDIRBY' 0.931
6 1.85 'TOP-PLATE-R6' NO 'FLDIRCH' 'FLDIRBY' 0.965
7 2.436 'TOP-PLATE-R7' NO 'FLDIRHR' 'FLDIRHR' 0.0
8 2.606 'TOP-PLATE-R8' NO 'FLDIRHR' 'FLDIRHR' 0.0

! Core material input
COR_FUM 'GRAPH'
COR_RFU 'GRAPH'
COR_MXM PBRG ! COR-USER-METAL (UDM3) in MP
COR_TKE NO

! ICBCD MATMCD DXBCD CDFBCD
COR_BCP 4 GRAPHITE 0.01 2.0e-4

```



Exercise 1 – COR Nodalization

FU/FUXM and MX situation in nodalization

- FU/FUXM and MX in same cells of the active core only
- MX does not appear in rings reserved for inner/outer reflector
- Fuel element radii on COR_GP

```
COR_FUM 'GRAPH'
COR_RFU 'GRAPH'
COR_MXM PBRG !
```


SS situation in nodalization

Exercise 1 – MX Component and Materials

MP input defines a new generic oxidizable COR material

- Material name ‘MATC’
- Type COR-USER-METAL
- Short name ‘PBRG’
- Templated to MELCOR built-in graphite (material properties + oxidation)

```
MP_ID MATC COR-USER-METAL PBRG
MP_BHVR GRAPHITE
```

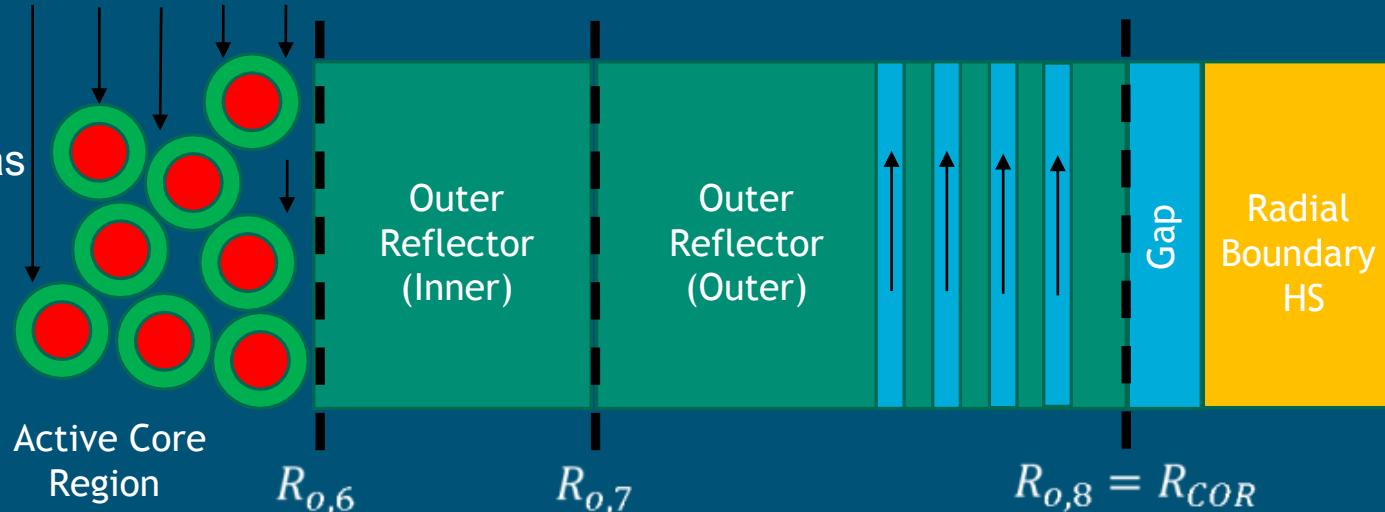
COR leverages MP definition for MX primary mate

```
COR_NMAT PBRG
```

Define mass of UDM primary in MX according to COR_NMAT:

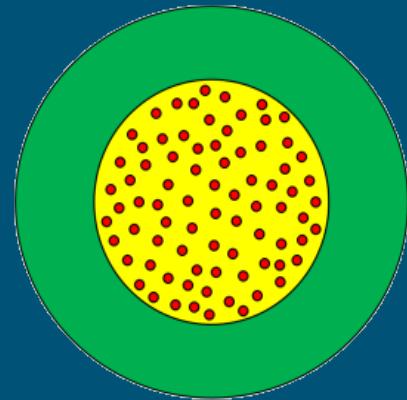
- MX specified
- Cell-by-cell
- 3rd slot mass

COR_NMAT 9							
1	1-5	1-6	MX	0.0	0.0	0.0	0.0
2	6-27	1	MX	0.0	0.0	0.0	0.0
3	6-27	2	MX	0.0	0.0	265.073	0.0
4	6-27	3	MX	0.0	0.0	306.606	0.0
5	6-27	4	MX	0.0	0.0	348.138	0.0
6	6-27	5	MX	0.0	0.0	389.670	0.0
7	6-27	6	MX	0.0	0.0	431.202	0.0
8	28	1-6	MX	0.0	0.0	0.0	0.0
9	ALL	7-8	MX	0.0	0.0	0.0	0.0


IA/IR	1	2	3	4	5	6	7	8
29	green							
28		blue						
27			red					
26				red				
25					red			
24						red		
23							red	
22								red
21								
20								
19								
18								
17								
16								
15								
14								
13								
12								
11								
10								
9								
8								
7								
6								
5		blue		blue		blue		blue
4								
3								
2								
1	blue		blue		blue		blue	

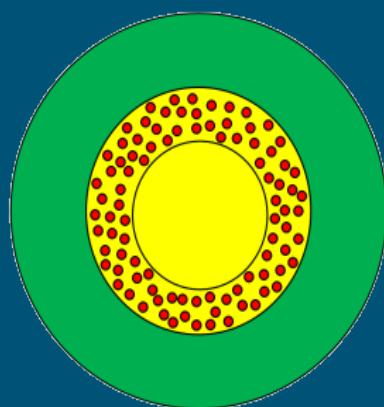
Exercise 1 – RF Component Configuration

Special concern that may arise in certain PBR/PMR designs...worth thinking through as an exercise


- Outer reflectors may double as coolant risers
- Coolant entering vessel travels upward in riser before turning downward through upper plenum/core
- How could this be modeled assuming COR RF component comprises the entire outer reflector?
 - Use one or two rings at core periphery
 - Use COR_RBV to specify CV's in CH/BY
 - Use COR_BFA to apportion coolant flow areas
 - AFLOWC in ring 6 decremented somewhat
 - AFLOWC in ring 7 incremented correspondingly
 - AFLOWB in ring 8 represents riser flow
 - Use COR_RFA to ensure RF has CH/BY SA
 - Conduction is on by default between:
 - Ring 6 MX and ring 7 RF
 - Ring 7 RF and ring 8 RF
 - Given COR_BFA and COR_RFA, ring 7 RF (CH) gets some convection cooling from core flow
 - Given COR_BFA and COR_RFA, ring 8 RF (BY) gets some convection cooling from riser flow
 - Use COR_BCP for boundary conduction, ring 8 RF conducts to the radial boundary HS across gap

FU	CVH
MX	HS
RF	

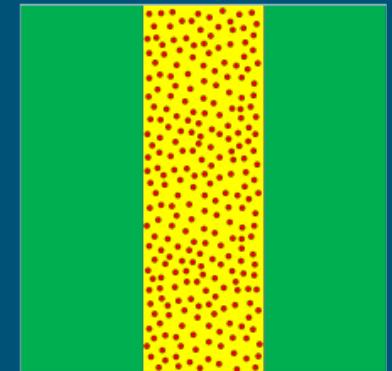
...Exercise 2 – PRKE Step Reactivity Insertion...


Conventional
Pebble Fuel
Element
(HTGR/PBR)

TRISO

Fuel (FU)

Annular Pebble
Fuel Element
(FHR)


GRAPHITE

Fuel Extra Material (FUXM)

GRAPHITE

Matrix (MX)

Prismatic Fuel
Element
(HTGR/PMR)

Exercise 2 – Point Reactor Kinetics Step Reactivity Insertion

COR_PKM01, COR_PKM02, and COR_PKM03 added to PBR COR TH demo to illustrate point kinetics

- Default kinetics data and delayed neutron group parameters
- 400 MW power level at criticality
- External CF does a step reactivity insertion of \$0.5 and holds
- Invoke Doppler, fuel temperature, and moderator temperature feedback with whole-core component average ! PKM temperatures

COR_PKM01 10.0 400.0e+6 ! start PKM at time 10.0 s, before that a 400 MW power level

COR_PKM02 'CFStepRx' ! CF furnishes external reactivity in reactivity units of \$

COR_PKM03 3

1 RDOPF 1 ! TAVG #1 (over FU, see below) , Doppler feedback

2 RFUF 2 ! TAVG #2 (over MX, see below), Fuel density feedback

3 RMODF 2 ! TAVG #2 (over MX, see below) , Moderator density feedback

!

COR_TAVG 2

1 ALL ALL FU UO2 ! pull FU component T's averaged over whole

core

2 ALL ALL MX COR-USER-METAL ! pull MX component T's averaged over whole-

CF_ID CFStepRx 607 L-A-IFTE

CF_SAI 1.0 0.0 0.0

CF_ARG 3 ! NARG CHARG ARSCAL ARADCN

1 CF-VALU('TimeOverTrip') ! L-GT type, goes T for time > 0

2 CF-CONST 0.5 ! \$0.5 insertion

3 CF-CONST 0.0 ! \$0 otherwise (criticality)

Exercise 2 – Output Processing


```
=====
POINT KINETICS MODEL DATA
=====

*****
*      TIME-INDEPENDENT DATA      *
*****


TIME OF MODEL ACTIVATION (S)      = +1.60000E+004
TIME OF MODEL DEACTIVATION (S)     = +1.79769E+308

REACTOR DATA
=====

INITIAL CORE POWER (W)            = +4.00000E+008
PROMPT NEUTRON GENERATION TIME (S) = +1.00000E-002
TOTAL EFFECTIVE DELAYED NEUTRON YIELD (-) = +6.50000E-003
AVERAGE NEUTRONS PER FISSION (NEUT/FISSION) = +2.43200E+000
ENERGY RELEASE PER FISSION (J)     = +3.04400E-011
EFFECTIVE DELAYED NEUTRON LIFETIME (S) = +8.50000E-002
PROMPT NEUTRON LIFETIME (S)        = +1.00000E-004

DELAYED NEUTRON GROUP DATA
=====

INDEX  DECAY CONSTANT (1/S)  RELATIVE ABUNDANCE (-)
-----  -----  -----
1       +1.24000E-002        +3.30000E-002
2       +3.05000E-002        +2.19000E-001
3       +1.11000E-001        +1.96000E-001
4       +3.01000E-001        +3.95000E-001
5       +1.14000E+000        +1.15000E-001
6       +3.01000E+000        +4.20000E-002
```

MELGEN/MELCOR Text Output

FEEDBACK MODEL DATA

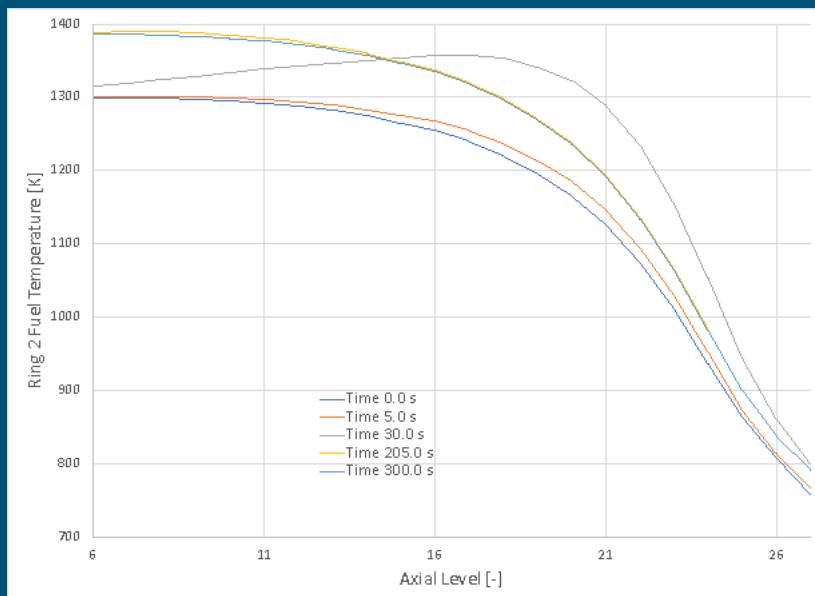
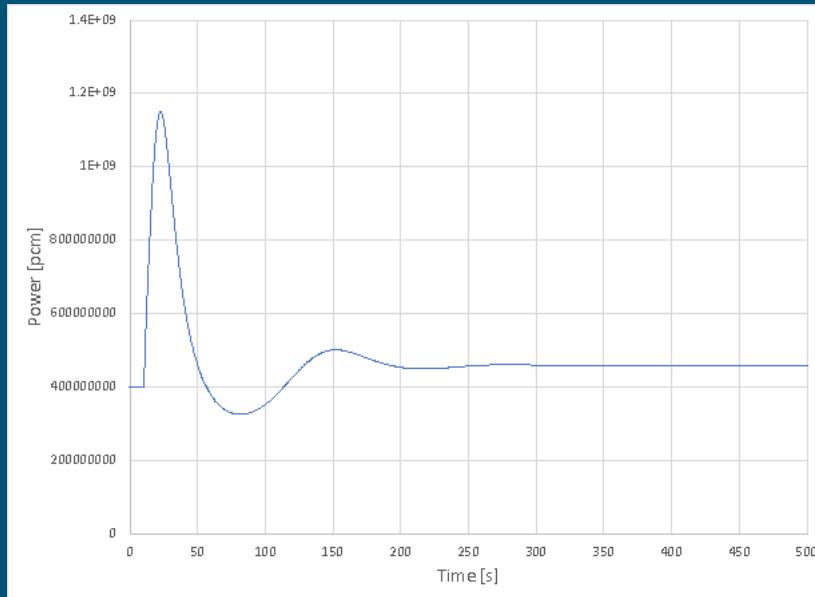
DOPPLER COEFFICIENT (-) = -2.20000E-002
 FUEL DENSITY COEFFICIENTS:

LINEAR (1/K)	= -4.78000E-005
QUADRATIC (1/K**2)	= +6.75000E-009
MODERATOR DENSITY COEFFICIENTS:	
LINEAR (1/K)	= +1.48340E-004
QUADRATIC (1/K**2)	= -1.60250E-007
CUBIC (1/K**3)	= +6.99000E-011
QUARTIC (1/K**4)	= -1.11140E-014

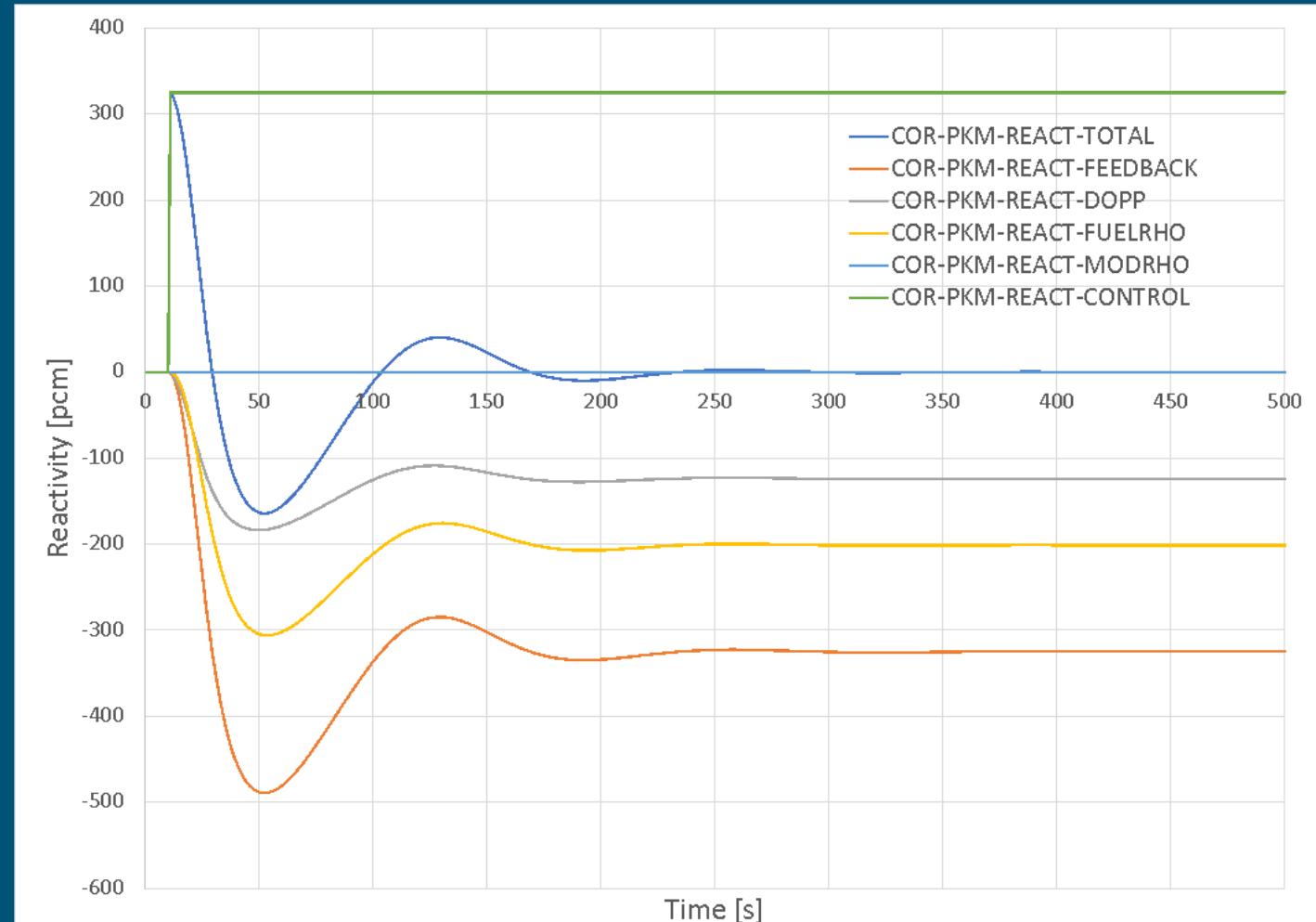
* DYNAMIC DATA *

POWERS (W)	=	
PROMPT + DELAYED	=	+4.00000E+008
GROUP 1	=	+0.00000E+000
GROUP 2	=	+0.00000E+000
GROUP 3	=	+0.00000E+000
GROUP 4	=	+0.00000E+000
GROUP 5	=	+0.00000E+000
GROUP 6	=	+0.00000E+000

NO NEUTRON SOURCE SPECIFIED.



TEMPERATURES (K)

	FEEDBACK	CURRENT	EQUILIBRIUM
DOPPLER	+0.00000E+000	+0.00000E+000	
FUEL DENSITY	+0.00000E+000	+0.00000E+000	
MODERATOR DENSITY	+0.00000E+000	+0.00000E+000	


REACTIVITIES (- / \$)

DOPPLER	= +0.00000E+000	/ +0.00000E+000
FUEL DENSITY	= +0.00000E+000	/ +0.00000E+000
MODERATOR DENSITY	= +0.00000E+000	/ +0.00000E+000
TOTAL FEEDBACK	= +0.00000E+000	/ +0.00000E+000
EXTERNAL/CONTROL	= +0.00000E+000	/ +0.00000E+000
TOTAL	= +0.00000E+000	/ +0.00000E+000
	(VALUE OF CF CFStepRx)	

Exercise 2 – Output Processing

MELCOR Plot Variables

Conclusions

Reviewed some user input structures and best practice guidelines for PBR/FHR and PMR COR modeling

Talked through construction of a COR PBR nodalization and population with properly defined components

Performed a step reactivity insertion point kinetics exercise with that COR PBR nodalization