

MELCOR for HTGR, FHR, and MSR - Workshop Introduction

MELCOR Workshop June 13-17, 2022

PRESENTED BY

Brad Beeny

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

MELCOR HTGR, FHR, and MSR Modeling/Development Introduction and Background

Development background

Modeling background

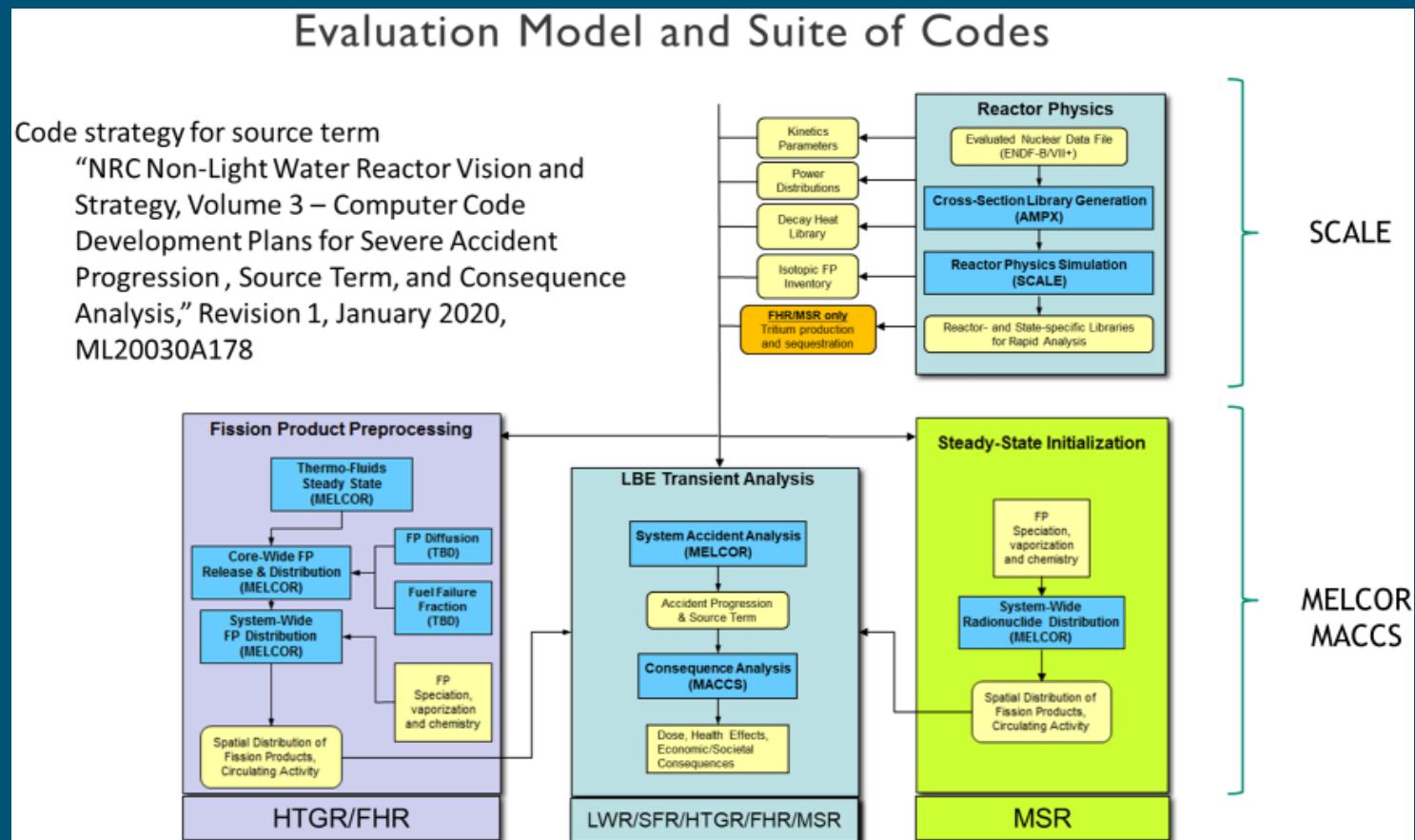
Workshop introduction

Background – Development

Development timeline for HTGRs and FHRs in MELCOR

- Prior to 2008
 - Few provisions for PMR/PBR (HTGR) and no provisions for FHR
 - Users adapted LWR models for PBRs
- 2008 – CSARP presentation outlines initial plans/efforts for HTGR
 - New COR package reactor types, components (reflector, RF), and conduction/convection models
 - Revisited/updated CVH/NCG capabilities (helium properties)
 - Beginnings of diffusional fission product release models, graphite oxidation model, and point kinetics models
- 2009 to 2010 - Miscellaneous improvements and early draft of an evaluation model for HTGRs
- 2011 to 2017 - Limited development, some HTGR modeling activity from the code user base
- 2018 to present – Non-LWR modeling initiatives
 - Revamped/streamlined the diffusional fission product release model input processing (HTGR and FHR)
 - Revisited solution methods and strategies
 - Finalized evaluation model for HTGR and created one for FHR (similar to HTGR)
 - Added new models and capabilities (e.g. FLiBe EOS and MSM/GRTR), modified existing models and capabilities
 - Built on existing PBR-400 input model to ultimately perform a demonstration source term calculation (HTGR)
 - Performed a demonstration source term calculation for FHR

Background – Modeling



User base exercised MELCOR HTGR models in various stages of maturity, both PMR and PBR

- Domestically, e.g. Texas A&M and PBR/PMR thermal hydraulics modeling
- Internationally, both European (PSI for HTR-PM, Nubiki for Allegro) and Asian users

SNL in-house modeling:

- MELCOR testing
 - Input models for verification/validation
 - Input models for quality assurance
- Demonstration
 - USNRC HTGR/FHR evaluation model
 - End-to-end source term calculation(s)
- Simultaneous with development

Conventional MELCOR workshop format focused largely on two topics:

- Core package (COR) thermal hydraulics modeling for HTGRs and FHRs (largely similar in nature)
- Radionuclide transport (fission product release) modeling from fuel for HTGRs and FHRs – largely configured in COR

Two sections per topic to discuss theory and practice in turn

Incorporate “best practice” recommendations that reflect, e.g.:

- HTGR modeling presented at EMUG of 2021
- HTGR workshop delivered at AMUG of 2021
- NURETH-19 SNL presentations on HTGR, FHR, and MSR related topics
- EMUG and AMUG of 2022
- US NRC source term demonstration calculation methodologies (HTGR and FHR)
 - Public presentations readily available
 - US NRC working to make input models readily available to MELCOR user base

Incorporate input model exercises

- Text file editing method exclusively (SNAP largely unavailable for non-LWR)
- Output and post-processing (MELGEN/MELCOR text, plot variables and control function arguments, HTML)

MELCOR Workshop Days 4 Agenda: HTGR/FHR	
<p><u>Day 4, Session 3 (Afternoon session 1)</u></p> <p>COR Thermal Hydraulics Theory</p> <ul style="list-style-type: none">• Components and Materials• Conduction• Convection• Oxidation• Point Kinetics	~ 2 hr
<p><u>Day 4, Session 4 (Afternoon session 2)</u></p> <p>COR Thermal Hydraulics Input/Exercises</p> <ul style="list-style-type: none">• Exercise - PBR Nodalization<ul style="list-style-type: none">• User input structures• Follow-along input exercise• Exercise - PBR Point Kinetics<ul style="list-style-type: none">• User input structures• Follow-along input exercise• Output	~ 1.5 hr

MELCOR Workshop Day 5 Agenda: HTGR/FHR	
<p><u>Day 5, Session 1 (Morning Session 1)</u></p> <p>COR Diffusional FP Release Theory</p> <ul style="list-style-type: none">• Fuel element representation• Finite volume diffusion• Fuel element temperature profiles• Analytic release model• Solution methodology• DCH/RN1 mapping• Class release scaling	~ 2 hr
<p><u>Day 5, Session 2 (Morning Session 2)</u></p> <p>COR Diffusional FP Release</p> <p>Input/Exercises</p> <ul style="list-style-type: none">• Exercise - FP release model<ul style="list-style-type: none">• User input structures• Follow-along input exercise• Exercise - Run sequence & VCFs<ul style="list-style-type: none">• User input structures• Follow-along input exercise• Output	~ 1 hr

MELCOR Workshop Day 5 Agenda: MSR	
<p><u>Day 5, Session 3 (Afternoon Session 1)</u></p> <p>MSR Thermal Hydraulics Theory/Practice</p> <ul style="list-style-type: none">• FLiBe as a working fluid• Fluid core configuration• Fluid fuel point reactor kinetics• Exercise - Zero Power Pump Coast	~ 2 hr
<p><u>Day 5, Session 4 (Afternoon Session 2)</u></p> <p>MSR FP Release Theory/Practice</p> <ul style="list-style-type: none">• GRTR• DCH/RN1 input considerations<ul style="list-style-type: none">• Class and form mapping• Form-wise mass initialization• Form-wise source specification	~ 1 hr