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PAC ’ : Tailoring Performance Assessment to Climate Intervention

The assessment space of impacts across the Earth system is large. Our approach is to identify
assessment targets based on current ESM outputs and leverage existing metrics for climate change
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A Monthly Mean Surface Temperature (C) * |Incorporate uncertainty from model selection and emissions scenarios (e.g., add in ARISE-SAl and GeoMIP simulations)

* Develop a method to weight responses to regional or local models of population

Developing Fully Connected Neural Network Surrogate Model Designing Simulations to Address Uncertainty in the
Trained on GLENS Simulations to Predict Climate Response SAl Scenario based on FEPs analysis
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20 H,SO, mass per m? in the E3SMv2 experimental "SO," prognostic volcanic aerosol simulation. This figure shows the
H,S50, (which is forming from oxidation of SO,) and spreading globally (Wagman et al., 2021).
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