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Grand Challenges

0
The Beginning
» Characterization of RP-80 fireballs using emission and schlieren imaging

0 ps

Visible emission from an RP-80
detonator without aluminum cup

PURDUE
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. . )
» Results illustrate structure of fireball and regions of peak luminosity 4"\



But when measured and modeled emission don’t
agree, how do you know what is responsible?!?

Emission = (T, P, X)
15 ps 20 ps

contours show 2D
temperature slices
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Grand Challenges

Our Goals

» Acquire temperature, H,O, CO measurements in post-det fireballs at ~ MHz rates
to evaluate fireball model accuracy

Challenges

« Transmission losses

* Optical emission

* Need ~us resolution
 Line-of-sight nonuniformities

Solutions

Optical engineering
Spectral and spatial filtering
DFB QCLs with bias-tee + wavelength selection

« Wavelength selection + ufilization of synthetic

measurements from CFD results




LAS Sensor Design: Diagnostic Technique

Tunable Laser (1) l(t) Detector
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LAS Sensor Design: Wavelength Selection

_ 0 1500 K -
Need mid-IR wavelengths 1 i,

_002
« Strong absorption needed for small scale &
and concentrations—>

—CH,
—NO

Linestrength, cmZ/atm

Need high-E” transitions
* Minimizes absorption in cold core—>eases
interpretation of path-integrated absorption
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Need large AE” transitions
« Large temperature sensitivity

N

~® Bias-Tee
Need closely spaced transitions for near-
MHz measurements

- Tuning amplitude of DFB QCLs is small at \ |
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.,

CL targets CO P(0,31) and P(2,20) transitions near 2008.5 cm-! (~5 um)
E” ~1901 and 5052 cm™!, AE"=3151 cm"’

« Measurements are deliberately biased to fireball’s hot outer shell!
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'— ) Output pellet

‘ . 123 mg RDX
l High-Speed 9 mm

Initiating pellet
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Key Details

« QCL scanned across CO transitions at 1 MHz, signal acquired on 200
MHz detector at 3 GS/s
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Key Takeaways

« Large optical losses, especially at shock arrival
« Each T, P, PcoL measurement acquired in ~0.5 us




Results: Example Absorbance Spectrum

Example Single-Scan Measurement

Key Takeaways >y
» Large absorbance | L[ peasured
« Relatively high-SNR 3 08
« Spectrum dominated by 2 lines 508
< 04
« Spectrum well modeled by uniform LOS 0.2 | P(3.14)
absorption model using HITEMP2019 O s ar e
« Single T, P, PcoL from each fit : 20
S 0
T =1360 K, % | | i | "H' “l
P =1.63 atm, © 2025 02 015 04  -0.05 0

PCOL = 0.315 atm-cm Relative Frequency, cm”




Results: Time Histories at y = 51 mm
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Key Takeaway

* Results are highly time resolved and repeatable
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So how can this data be used to evaluate fireball models?

Compare with synthetic LAS measurements from CFD+Spectroscopy!

Temperature, K Pressure, atm CO Partial Pressure, atm
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Grand Challenges

Simulation Framework 15 s

contours show 2D
temperature slices

CTH
hydrocode

HyB
UF CI3:/Durn

M\

Multi-physics requires several coupled

computational tools [

1. Hydrocode predicts explosive detonation
and fragmentation

2. Fireball species initialized based on
equilibrium and kinetics assumptions

3. 3D reactive Large Eddy Simulation (LES)
predicts fireball evolution
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:~'§ Fireball Modeling Assumptions
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Evaluated 4 CFD Models

3000 ——Method 1
* Method 1 (2D) 2000 —Method 2
——Method 3
 Chemical equilibrium at 4 pus handoff to HyBurn - 1000 _Method4
—>Very little CO . | | | ‘
* Method 2 (2D) 0 1 2 3 4
« K-W rules implemented at handoff time . 27
- Much more CO! ©® 4
o 2t
O I | )
* Isentropic expansion from CJ state to 1500 K, 0 1 2 3 4
afterwhich kinetics are frozen prior to handoff to 0.6
HyBurn -% 04}
* Method 4 (3D) &8 0.2
3D version of Method 3 Q
0 1 2 3 4
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1. CFD provides

* T, P, Xco, Xco2, Xh20, Xors Xno 4000
as f(x)

2. Used spectroscopic model to
calculate path-integrated 1%
absczrbance spectrum: 1 2500
=j S(T)Pco i bi(v,Av,, Av,)dl {2000

. ,

a(v) = ) STDPeo v, Ave, Av)dx
3. Fit a simulated spectrum -

assuming uniform LOS to
synthetic measurement of a(v)

*  Gives T, P, PcoL to compare with
measured values!
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Fitting results:
T=1593.8 K
P=1.14 atm

PCO = 0.00044 atm
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<=sResults: Comparison with Synthetic LAS Measurements
- 2200 ° QCL Mgasurement

Key Takeaways for Method 1 Efzzg By s ' ® Synthetic Me%asurement
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with synthetic measurement £ 500 :

- 400
3

* Measured P in agreement between £ @ . %

25-35 us g 2 3‘? W o ’
% 1L ° ? o ° o]

* Measured Pcol is order of S :
magnitude larger than synthetic = 8 %
measurement!!!!! T 06] ;e @%

s 04r 8, . & @f
_I8 0ol fgu%m §? &ae o
o
020 2.5 3.0 35 40 4.5 50

18 Time, us



O€ QQ

é.?‘g%} Results: Comparison with Synthetic LAS Measurements
= 2200 - o QCL Measurement
Key Takeaways for Method 2 . fzzg By s T |+ Sy Nieas (vethod
* Synthetic measurement of P¢ol Bl M T I it
dramatically improved (correct order € 4o, . ’
of magnitude) = 400 . * ‘ J .
* lllustrates importance of accounting c i ) %
for carbon freeze out! € g e . ew 3
* But synthetic measurement of T and g il -~ . S .
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. !
E‘ 047 @g% ?_my :,? j%ﬁ
02t 6y i .
o
020 2.5 3.0 3.5 46 4‘5 5‘0

19 Time, us



o QCL Measurement
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Key Takeaways

CO exhibits reasonable
agreement, but T is consistently low

°* Method 4: T, P, and CO exhibit good
agreement with QCL measurements
« Accounting for freeze out at 1500 K
+ 3D CFD is most accurate!
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;  Conclusions

S

* QCLAS diagnostic applied to measure T, P, PoL at 1 MHz in RP-80 fireballs

* Measurements used to evaluate 4 CFD models
* lllustrate importance of accounting for freeze out and 3D effects
Main Challenges Addressed:
* Optical density
—> Careful alignment + MHz scanning
* Elevated pressures
- Wavelength selection + data processing
* MHz measurements
—->Wavelength selection + modulation through bias-tee
* Extremely Nonuniform LOS
- Wavelength selection + comparison with synthetic measurements
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Future Work

1. Expand to simultaneous CO & CO, 2. Expand mid-IR diagnostics to larger scale

Function Generator: Fireball produced by
Scan Waveform HMX, 15 ps after ™
N O detonation

Probe at 30 cm
standoff distance ™

10 MHz
Clock
Synch

’ Optical
/ Fiber

Diode Laser
1392 nm

Tunable
Diode Laser
1469 nm

Data Acquisition

Function Generator:
Modulation Waveform

Blast Chamber

PURDUE
ENG\NEERING\
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