

Resources estimates for DOE quantum simulation problems

Andrew Baczewski, Quinn Campbell, Lucas Kocia, Ben Morrison, Antonio Russo, Stefan Seritan, UNM AA: Tameem Albash and Conor Smith

Simulation: DOE's killer quantum computing app

- Identified as the **common application of interest** across DOE/SC, as well as NNSA/ASC.
- Qubits encode **exponentially larger states** than classical bits, **information extracted at quantum limit**.
- Efforts at other institutions typified by time horizons
 - Near-term: noisy hardware, intense SME interest, **not scalable**.
 - Far-term: error-corrected hardware, mild SME interest, **scalable**.
- Our approach: improve abstractions for developing **new simulation applications** on scalable hardware.

Exploring applications answers open questions

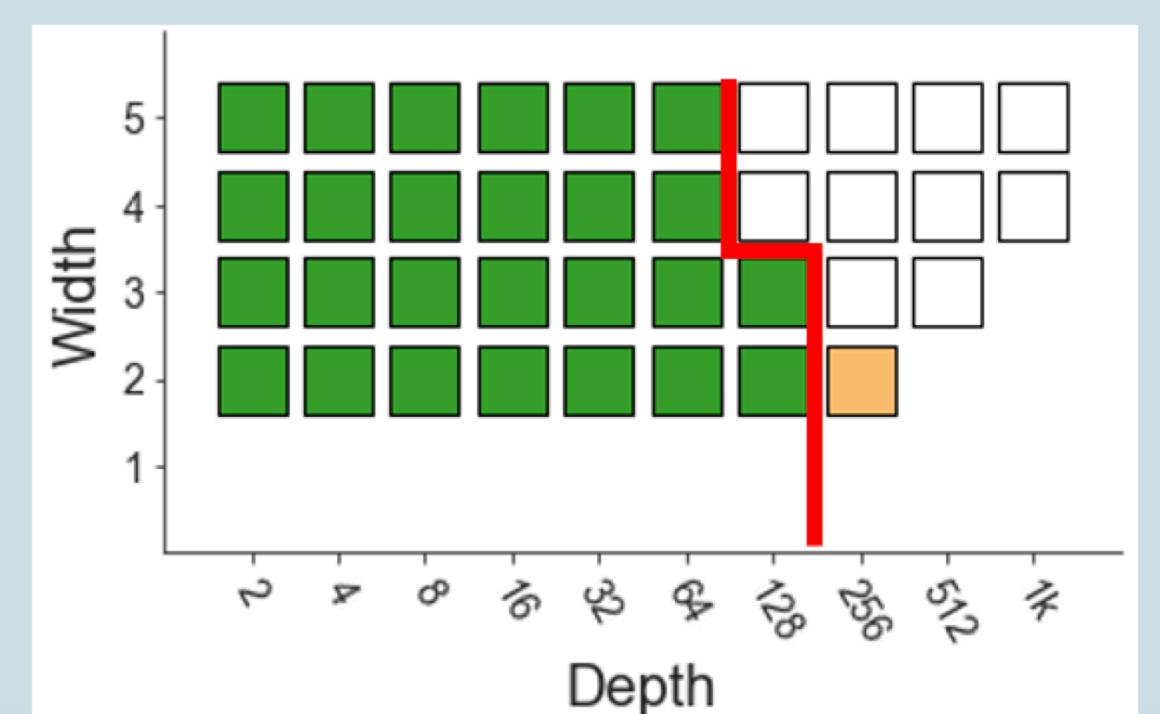
- Resource estimates for a variety of **DOE problems**

Application	Example	Electrons	Logical qubits	Toffoli count	Physical qubits (est.*)
Bulk solid	Nickel oxide (strong correlation)	64	3,254	2.5×10^{12}	2.0×10^7
2D material	Carbon nitride (water splitting)	288	8,592	2.1×10^{12}	5.6×10^7
Surface chemistry	Atomic precision doping (nanoelectronics)	726	19,157	1.0×10^{13}	1.4×10^8

Based on an algorithm by Su, et al., PRX Quantum (2021)

- These estimates ignore the cost of state preparation, **one of the biggest open questions in simulation**.
- First estimates including state preparation - **total cost depends on the question that you're asking**.

We are leveraging funding from ASCR (0.4 FTE), ASC (4 FTE), and LDRD (0.8 FTE).


Focus on common & scalable abstractions

- Two subroutines shared by scalable applications: **block encoding** and **state preparation**.
- Task: calculate a **matrix element**

Broader impacts

- Block encoding circuits are being used as application-inspired benchmarks (collaboration w/**SNL Quantum Performance Laboratory**)
- Classical benchmarks from collaboration w/**Albash group @ UNM**.
- Goal: **Make Sandia the go-to national laboratory for application-specific quantum computing co-design**.

Red line indicates frontier beyond which circuits fail