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Motivation: Quantum computing hardware is imperfect

. Quantum computers have applications across DOE's and SNL's mission space (e.g., materials
science, energy). But only if they can reliably run quantum algorithms!

. The problem is that quantum computing hardware is imperfect. When they run a quantum
computation errors sometimes occur, and this can cause them to return the Wrong answer...
This is infeasible to compute >
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. ...and it is difficult to tell if a quantum computation’s result is correct! We can't simply

compare to an error-free simulation on a classical computer - that's too expensive.

. It is even harder to predict, in advance, which quantum computations a particular quantum
computer can and can't run!

Learning a quantum computer’s capability

. We're designing neural networks methods to predict the success rate of any quantum
program, on a particular guantum computer, from a small labelled data set.>

Our current networks are convolutional neutral networks,
with quantum programs (the input) encoded as images.
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. Our initial methods vastly outperform existing techniques in some important circumstances,
while avoiding exponential scaling problems that plague other methods.
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Our initial methods use convolutional
neural networks to learn a surrogate
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. This is a first step towards surrogate models for a quantum computer’s capability.

For references 1-10, see the project information sheet.
*Graduate student at UC Berkeley, funded by Sandia LDRD.

Sandia National Laboratories is a multimission laboratory managed and operated by National
Technology &Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NAO003525.
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Designing efficient tests for quantum computers

Demonstration of first proxy program method. We've demonstrated the power and

We're designing the first “proxy program” methods that enable efficiently measuring a

quantum computer success rate on a quantum program.“‘

We developed the first technique for turning a quantum

program into a “proxy” that is similar but whose output

s easily classified as “correct” or “incorrect”.

We're developing foundational theory and methods, and

implementing them in code.

accuracy of our “mirror circuit” method, using simulated data from a 100-qubit algorithm.
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When x =y, the success rate
on our proxy programs
accurately predictions the true
program’s success rate!
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Proxy Programs: We've introduced the idea of
using proxy quantum programs to indirectly
measure a quantum program’s success rate,
circumventing the exponential scaling problem
of the “try it and see” approach (left hand side).
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Impacts: Understanding cutting-edge hardware

Our code is in pyGSTi, which is Sandia’s open-source software for quantum computer testing

used by leading quantum computing groups around the world (e.g., DOE's testbeds).?.10

We're collaborating with other national labs (ORNL,
LBL) to deploy our methods.4®

Our methods are being used by industry (e.g.,
Quantum Economic Development Consortium,
Honeywell).”:3

We're publishing in high-impact journals.'-3

We're part of a large effort, at Sandia’s Quantum
Performance Laboratory (QPL)3, to study errors in
guantum computing hardware.

Our techniques are a first step towards studying
hardware that cannot be simulated classically.

Project has led to a 2022 DOE Early Career Award.

Catalyzing the Quantum Ecosystem
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WHERE INNOVATION BEGINS

Primarily supported by an LDRD (3 years, 09/2020 - 09/2023, ~$470K / year). Additional support from DOE/SC/ASCR projects. : QUANTUM SYSTEMS ACCELERATOR
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Using our methods to implement the first scalable testing
of “universal” gates. We've implemented the first ever robust,
randomized tests of universal gate sets on 20+ qubits.*

""" il BERKELEY LAB ﬁg{,}gﬁlﬁy
| Sand
yuantum Nationa

Laboratories

Performance Laboratory




