Thislpaperldescribesfobjectiveftechnicallresultslandlanalysis JAnvisubiectivelviewslorfopinionsithatimightibellexpressed in} SAND2022-7952C
hepaperfdolnotinecessarilyjrepresentith heJU.S JDepartment]oflEnergyforfthejUnitedStatesfGovernment.

Sandia
National
Laboratories

Chapel and Grafiki Integration

Summer project:
Trevor McCrary (Mississippi State University, SNL intern)
Karen Devine, SNL
Andrew Younge, SNL

c .&F, U.5. DEPARTMENT OF /A
'f:‘ﬂ y E"ERGY V'] 'ﬁ‘] Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly
i e ”"'”’”" “ trationt owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

SandiallNationallLaboratorieslislalmultimissionilaboratoryimanagediand|operatediby|N aliTechnoloayl&|EngineeringlSolutionsfofiSandia,ILLC,la
subsidiaryfofiHoneywell|internationalfinc. fforfthe]U.S fDepartmentloflEnergy" i

Sandia
rl1 National

Laboratories

Chapel and Grafiki integration:
using the right tool for every job

X|X|X
X X
X X

X|X[X X|X|X

@) 1 . 2

Chapel’s PGAS enables analysts to Grafiki’s linear-algebra-based parallel graph
easily manipulate parallel graph data algorithms enable efficient parallel graph
(e.g., extract largest connected analysis
component via label propagation) (e.g., vertex hitting times)

Composing tools is challenging
« Different parallel paradigms: PGAS in Chapel vs MPI in Grafiki
« Different data formats: Edge lists in Chapel vs matrix in Grafiki
* Huge graphs prohibit copying/reformatting data in memory
Three new approaches to integrate Chapel graph manipulation with Grafiki graph
analysis without requiring additional copy of graph
* Direct calls from Chapel to Grafiki using Chapel’'s C interface
« Separate Chapel & Grafiki processes access shared mmap memory
 Chapel and Containerized Grafiki access shared mmap memory
6/14/2022

Sandia
m National

Laboratories

Requirement to not copy data allows ability
to solve larger problems

* Share data with files is not scalable
— Chapel reads data, modifies it, and writes results to a new
file
— C++ program reads new file and performs some analysis
with it
* Sharing data with native data structures requires
copies that use extra memory

— Chapel reads data, modifies it, and shares it with C++
program

— C++ program rearranges data, which creates a copy, and
performs some analysis with it

6/14/2022 3

C++ program needs to have general
abstractions to use data in any format

* Grafiki relies on Trilinos for linear algebra
classes and linear/eigen solvers

* Replaced Grafiki’s use of concrete CrsMatrix
class with abstract RowMatrix

— RowMatrix user provides implementation of key
operations (SpMV, norms, etc.)

* New Chapel-based RowMatrix uses edge lists
directly from Chapel to perform matrix
operations — no data copy

6/14/2022 4

Sandia
m National

Laboratories

Approach 1: Chapel program calls Grafiki
through Chapel’s C interface

EdgelLists

-
<
o

«

Chapel creates EdgelList in C function instantiates Grafiki computes
BlockDomain arrays RowMatrix from using

Each Chapel locale directly EdgelList pointers RowMatrix
calls C function (in C function calls Grafiki
coforall) with pointer to its
local data

Pro: Simple proof-of-concept for data sharing
Con: Intrusive to user: needs to link with Trilinos and Grafiki

6/14/2022

Sandia
m National

Laboratories

Approach 1 details: Coordinating Chapel
locales and MPI ranks

* Numbers of Chapel locales and MPI ranks are equal

* Calls from Chapel to Grafiki must be made from each
locale in parallel

— All locales must enter Grafiki together to avoid hanging in
Grafiki’s MPI collective communication

— Chapel coforall launches one task per locale
* Locales provide pointers to local edge list arrays

coforall loc in Locales { Image is Unclassified
on loc {
var subdom = edgelist.localSubdomain();

call_C_ function(c_ptrTo(edgelist[subdom.low]), ...);

}
J

6/14/2022 6

Sandia
Il'l National

Laboratories

Approach 2: Separate Chapel and Grafiki
processes share data in mapped memory

EdgelLists New shareBlockDomain uses shared memory
\ (mmap) on each compute node > « >
‘\\i—' -
‘\\‘t .
Chapel creates EdgeList in new C process instantiates Grafiki computes
shareBlockDomain arrays that RowMatrix from using
use mmap memory EdgeList pointers in RowMatrix
Chapel program signals (via mmap’ed memory
POSIX semaphore) external C C process calls Grafiki,
process to begin signals Chapel when done

Less intrusive: user uses Chapel as usual, only substituting
shareBlockDomain for BlockDomain for shared data

6/14/2022

Sandia
ﬂ'l National

Laboratories

Approach 2 details: new shareBlockDomain

* Chapel Domains
— describe distribution of data across locales (processors)
— manage global address space indexing

* Chapel’s Block Domain assigns contiguous chunks of
global arrays to locales

— Each locale’s local array is a separate allocation

* New shareBlock Domain replaces the
local array allocation with mmap regions
in shared memory

— Separate mmap backing file for each
shared array

— Backing file names are shared between
processes through tiny meta-data file

— Chapel users simply substitute M
shareBlock for Block in their code —~2

EdgelLists

6/14/2022

Approach 3: Chapel and Containerized Grafiki® &

further simplify user experience

EdgelLists New shareBlockDomain uses shared memory

\ (mmap) on each compute node — <
T —

‘--.___-.-.~ﬁ;i—i —
/ <
‘\\‘t
— 1
Chapel creates EdgelList in Container image provides pre
new shareBlockDomain arrays -built C process and
that use mmap memory Grafiki libraries that run as
Chapel program signals external C process to in Approach 2.

begin via pseudo-semaphore (mmap int)

Least intrusive: Container handles details of building and
running C process and Grafiki

6/14/2022

Sandia
ﬂ'l National
Laboratories

Demonstrations done with Chapel on MPI
and SMP systems

* MPI-enabled Chapel on Cray / Haswell
(mutrino)

— Single locale / rank per node, multiple nodes

* Shared-memory Chapel on Xeon (kahuna)
— Single node, multiple locales / ranks per node
— Uses containerized Grafiki with Singularity

* Compare
— approach One — Chapel’s C interoperability
— approach Two — separate processes

— Look at Chapel label propagation and Grafiki hitting times

6/14/2022 10

Sandia
'I‘ National
laboratories

Using mmap memory shows no performance
penalty against a Chapel’s usual memory

Chapel Grafiki
LabelPropagation Hitting Times
Number | Time per iteration | Time per iteration
of (seconds) (seconds)
Platform | Locales | One Two One Two
Kahuna 1| 1.24 1.22 | 0.0285 0.0287
2| NA 1.91 NA 0.0162
4 | NA 1.56 NA 0.0087
8 | NA 1.00 NA 0.0045
16 | NA 0.65 NA 0.0051
Mutrino 1| 0.82 0.89 | 0.0215 0.0230
0.65 0.77 | 0.0113 0.0120
4 | 044 0.47 | 0.0058 0.0062 Bosstk29 mitx
8 | 0.22 0.29 | 0.0031 0.0033
16 | 0.11 0.15 | 0.0018 0.0018 000k nonzeros
: : : ' 14k rows & columns

6/14/2022 11

Sandia
m National
Laboratories

Using mmap memory shows no performance
penalty against a Chapel’s usual memory

Chapel Grafiki Kahuna used chapel
LabelPropagation Hitting Times SMP 1.23, and we were
Number | Time per iteration | Time per iteration | ynable to run approach
of (seconds) (seconds) 1 on more than one
Platform | Locales | One Two One Two | locale
Kahuna » 1.22 g 0.0287
1.91 0.0162
1.56 0.0087
1.00 0.0045
0.65 0.0051
Mutrino 0.89 0.0230
0.77 0.0120
g;; g:gggg Bcsstk29.mtx
015 0.0018 600k nonzeros
' ' 14k rows & columns

6/14/2022 12

Sandia
m National

Laboratories

Using mmap memory shows no performance
penalty against a Chapel’s usual memory

Chapel Grafiki mmap memory
LabelPropagation Hitting Times performs equal to
Number | Time per iteration | Time per iteration | Chapel’s usual memory
of (seconds) (seconds) when comparing

Platform | Locales | One Two One Two | approach One and Two
Kahuna 1| 1.24 1.22 | 0.0285 0.0287
2 | NA 1.91 NA 0.0162
4 | NA 1.56 NA 0.0087
8 | NA 1.00 NA 0.0045
16 | NA 0.65 NA 0.0051

Mutrino

Bcsstk29.mtx
600k nonzeros
14K rows

6/14/2022

Using mmap memory shows no performance penalt

against a Chapel’s usual memory

Chapel Grafiki
LabelPropagation Hitting Times

Number | Time per iteration | Time per iteration

of (seconds) (seconds)
Platform | Locales | One Two | One Two
Kahuna 1| 8626 7476 | 1187 1235
4 NA 9103 NA 364
16 NA 3749 NA 188
Mutrino 4 | OOM 10333 | OOM 371
16 | 1274 3079 103 105
64 320 824 30 26

6/14/2022

Sandia
National
Laboratories

GAP_kron.mtx
4B nonzeros
134M rows

Using mmap memory shows no performance penalt

against a Chapel’s usual memory

Sandia
m National

Laboratories

Kahuna used chapel SMP 1.23,
and we were unable to run
approach 1 on more than one

locale
Chapel Grafiki
LabelPropagation Hitting Times

Number | Time per iteration | Time per iteration

of (seconds) (seconds)
Platform | Locales | One Two | One Two
Kahuna 1| 8626 7476 | 1187 1235
4 9103 364
16 @ 3749 @ 188
Mutrino 4 | OOM 10333 | OOM 371
16 | 1274 3079 103 105
64 320 824 30 26

6/14/2022

GAP_kron.mtx
4B nonzeros
134M rows

Using mmap memory shows no performance penalt

against a Chapel’s usual memory

Sandia
National
Laboratories

There is a noticeable loss of performance in the
Chapel label propagation using mmap memory.

We hypothesize that this is due to using Chapel 1.23’s
Block Domain as a template for share block.

Chapel Grafiki
LabelPropagation Hitting Times

Number | Time per iteration | Time per iteration

of (seconds) (seconds)
Platform | Locales | One Two | One Two
Kahuna 1| 8626 7476 | 1187 1235
4 NA 9103 NA 364
16 NA 3749 NA 188
Mutrino 4 OOM 371
16 103 105
64 | 30 26

6/14/2022

GAP_kron.mtx
4B nonzeros
134M rows

Using mmap memory shows no performance penalt

against a Chapel’s usual memory

Sandia
m National

Laboratories

We still observe no performance
penalty when using the mmap
memory in the C++ program

Chapel Grafiki
LabelPropagation Hitting Times
Number | Time per iteration | Time per iteration
of (seconds) (seconds)
Platform | Locales | One Two | One Two
Kahuna 1| 8626 7476 | 1187 1235
4 NA 9103 NA 364
16 NA 3749 NA 188
Mutrino 4 | OOM 10333 |
16 | 1274 3079
64 320 824 |

6/14/2022

GAP_kron.mtx
4B nonzeros
134M rows

Future Work

* Extend operability to different Chapel
distributions

— Option for chapel to accept a user defined
allocator

* Analyze container performance

* Analyze Chapel and C++ integrated code
against pure Chapel implementation

6/14/2022

Sandia
ﬂ'l National

Laboratories

Approach 3 details: Containerized Grafiki

Container software stack significantly different than
Chapel requirements
Created container to include our software stack

- Alpine 3.12, GCC 9.3, MPICH 3.2, OpenBLAS,
Trilinos (develop branch), and Grafiki
- Custom Grafiki-connector code

Built and tested as OCI (Docker) container

Converted to Singularity SIF on HPC clusters

Challenge: While mmap memory works across
containers, POSIX Semaphores do not!

Semaphores created on parent process stack,
unusable in container after namespace creation

& alpine ATWPI

Solution: Implement “pseudo-semaphore” signaling

mechanism using a mmap int : kokkos |

Tested and validated with MPI (Kahuna) @ IBL‘x IAS‘
More refinement of container image to continue 7= iNGS

Containers allow researchers to blend tailored software
capabilities with user software requirements

6/14/2022

