
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Chapel and Grafiki Integration
Summer project:

Trevor McCrary (Mississippi State University, SNL intern)
Karen Devine, SNL

Andrew Younge, SNL

SAND2022-7952CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Chapel and Grafiki integration:
using the right tool for every job

6/14/2022 2

x x x
x x
x x
x x x x x x

x x
x
x

x
Chapel’s PGAS enables analysts to

easily manipulate parallel graph data
(e.g., extract largest connected
component via label propagation)

Grafiki’s linear-algebra-based parallel graph
algorithms enable efficient parallel graph
analysis
(e.g., vertex hitting times)

Composing tools is challenging
• Different parallel paradigms: PGAS in Chapel vs MPI in Grafiki
• Different data formats: Edge lists in Chapel vs matrix in Grafiki
• Huge graphs prohibit copying/reformatting data in memory

Three new approaches to integrate Chapel graph manipulation with Grafiki graph
analysis without requiring additional copy of graph
• Direct calls from Chapel to Grafiki using Chapel’s C interface
• Separate Chapel & Grafiki processes access shared mmap memory
• Chapel and Containerized Grafiki access shared mmap memory

Requirement to not copy data allows ability
to solve larger problems

• Share data with files is not scalable
– Chapel reads data, modifies it, and writes results to a new

file
– C++ program reads new file and performs some analysis

with it

• Sharing data with native data structures requires
copies that use extra memory
– Chapel reads data, modifies it, and shares it with C++

program
– C++ program rearranges data, which creates a copy, and

performs some analysis with it

6/14/2022 3

C++ program needs to have general
abstractions to use data in any format

• Grafiki relies on Trilinos for linear algebra
classes and linear/eigen solvers

• Replaced Grafiki’s use of concrete CrsMatrix
class with abstract RowMatrix
– RowMatrix user provides implementation of key

operations (SpMV, norms, etc.)

• New Chapel-based RowMatrix uses edge lists
directly from Chapel to perform matrix
operations – no data copy

6/14/2022 4

Approach 1: Chapel program calls Grafiki
through Chapel’s C interface

6/14/2022 5

EdgeLists

Chapel creates EdgeList in
BlockDomain arrays

Each Chapel locale directly
calls C function (in
coforall) with pointer to its
local data

C function instantiates
RowMatrix from
EdgeList pointers

C function calls Grafiki

Grafiki computes
using
RowMatrix

Pro: Simple proof-of-concept for data sharing
Con: Intrusive to user: needs to link with Trilinos and Grafiki

Approach 1 details: Coordinating Chapel
locales and MPI ranks

• Numbers of Chapel locales and MPI ranks are equal
• Calls from Chapel to Grafiki must be made from each

locale in parallel
– All locales must enter Grafiki together to avoid hanging in

Grafiki’s MPI collective communication
– Chapel coforall launches one task per locale

• Locales provide pointers to local edge list arrays

6/14/2022 6

coforall loc in Locales {

 on loc {

 var subdom = edgelist.localSubdomain();

 call_C_function(c_ptrTo(edgelist[subdom.low]), …);

 }

}

Image is Unclassified

Approach 2: Separate Chapel and Grafiki
processes share data in mapped memory

6/14/2022 7

EdgeLists

Chapel creates EdgeList in new
shareBlockDomain arrays that
use mmap memory

Chapel program signals (via
POSIX semaphore) external C
process to begin

C process instantiates
RowMatrix from
EdgeList pointers in
mmap’ed memory

C process calls Grafiki,
signals Chapel when done

Grafiki computes
using
RowMatrix

Less intrusive: user uses Chapel as usual, only substituting
shareBlockDomain for BlockDomain for shared data

New shareBlockDomain uses shared memory
 (mmap) on each compute node

Approach 2 details: new shareBlockDomain
• Chapel Domains

– describe distribution of data across locales (processors)
– manage global address space indexing

• Chapel’s Block Domain assigns contiguous chunks of
global arrays to locales
– Each locale’s local array is a separate allocation

• New shareBlock Domain replaces the
local array allocation with mmap regions
in shared memory
– Separate mmap backing file for each

shared array
– Backing file names are shared between

processes through tiny meta-data file
– Chapel users simply substitute

shareBlock for Block in their code

6/14/2022 8

EdgeLists
mmap

mmap

mmap

SemaphoreSemaphore

Approach 3: Chapel and Containerized Grafiki
further simplify user experience

6/14/2022 9

EdgeLists

Least intrusive: Container handles details of building and
running C process and Grafiki

New shareBlockDomain uses shared memory
 (mmap) on each compute node

Container image provides pre
-built C process and
Grafiki libraries that run as
in Approach 2.

Chapel creates EdgeList in
new shareBlockDomain arrays
that use mmap memory

Chapel program signals external C process to
begin via pseudo-semaphore (mmap int)

Demonstrations done with Chapel on MPI
and SMP systems

• MPI-enabled Chapel on Cray / Haswell
(mutrino)
– Single locale / rank per node, multiple nodes

• Shared-memory Chapel on Xeon (kahuna)
– Single node, multiple locales / ranks per node
– Uses containerized Grafiki with Singularity

• Compare
– approach One – Chapel’s C interoperability
– approach Two – separate processes
– Look at Chapel label propagation and Grafiki hitting times

6/14/2022 10

Using mmap memory shows no performance
penalty against a Chapel’s usual memory

6/14/2022 11

Bcsstk29.mtx
600k nonzeros
14k rows & columns

Using mmap memory shows no performance
penalty against a Chapel’s usual memory

6/14/2022 12

Bcsstk29.mtx
600k nonzeros
14k rows & columns

Kahuna used chapel
SMP 1.23, and we were
unable to run approach
1 on more than one
locale

Using mmap memory shows no performance
penalty against a Chapel’s usual memory

6/14/2022 13

Bcsstk29.mtx
600k nonzeros
14k rows

mmap memory
performs equal to
Chapel’s usual memory
when comparing
approach One and Two

Using mmap memory shows no performance penalty
against a Chapel’s usual memory

6/14/2022 14

GAP_kron.mtx
4B nonzeros
134M rows

Using mmap memory shows no performance penalty
against a Chapel’s usual memory

6/14/2022 15

Kahuna used chapel SMP 1.23,
and we were unable to run
approach 1 on more than one
locale

GAP_kron.mtx
4B nonzeros
134M rows

Using mmap memory shows no performance penalty
against a Chapel’s usual memory

6/14/2022 16

GAP_kron.mtx
4B nonzeros
134M rows

There is a noticeable loss of performance in the
Chapel label propagation using mmap memory.
We hypothesize that this is due to using Chapel 1.23’s
Block Domain as a template for share block.

Using mmap memory shows no performance penalty
against a Chapel’s usual memory

6/14/2022 17

GAP_kron.mtx
4B nonzeros
134M rows

We still observe no performance
penalty when using the mmap
memory in the C++ program

Future Work

• Extend operability to different Chapel
distributions
– Option for chapel to accept a user defined

allocator

• Analyze container performance
• Analyze Chapel and C++ integrated code

against pure Chapel implementation

6/14/2022 18

Approach 3 details: Containerized Grafiki

6/14/2022 19

Container software stack significantly different than
Chapel requirements

Created container to include our software stack
- Alpine 3.12, GCC 9.3, MPICH 3.2, OpenBLAS,
Trilinos (develop branch), and Grafiki
- Custom Grafiki-connector code

Built and tested as OCI (Docker) container
Converted to Singularity SIF on HPC clusters
Challenge: While mmap memory works across

containers, POSIX Semaphores do not!
Semaphores created on parent process stack,
unusable in container after namespace creation
Solution: Implement “pseudo-semaphore” signaling
mechanism using a mmap int
Tested and validated with MPI (Kahuna)

More refinement of container image to continue

Containers allow researchers to blend tailored software
capabilities with user software requirements

