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Chapel and Grafiki integration:  
using the right tool for every job
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Chapel’s PGAS enables analysts to 

easily manipulate parallel graph data 
(e.g., extract largest connected 
component via label propagation )

Grafiki’s linear-algebra-based parallel graph 
algorithms enable efficient parallel graph 
analysis 
(e.g., vertex hitting times)

Composing tools is challenging
• Different parallel paradigms:  PGAS in Chapel  vs  MPI in Grafiki
• Different data formats:  Edge lists in Chapel  vs  matrix in Grafiki
• Huge graphs prohibit copying/reformatting data in memory

Three new approaches to integrate Chapel graph manipulation with Grafiki graph 
analysis without requiring additional copy of graph
• Direct calls from Chapel to Grafiki using Chapel’s C interface
• Separate Chapel & Grafiki processes access shared mmap memory
• Chapel and Containerized Grafiki access shared mmap memory



Requirement to not copy data allows ability 
to solve larger problems

• Share data with files is not scalable
– Chapel reads data, modifies it, and writes results to a new 

file
– C++ program reads new file and performs some analysis 

with it

• Sharing data with native data structures requires 
copies that use extra memory
– Chapel reads data, modifies it, and shares it with C++ 

program
– C++ program rearranges data, which creates a copy, and 

performs some analysis with it
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C++ program needs to have general 
abstractions to use data in any format

• Grafiki relies on Trilinos for linear algebra 
classes and linear/eigen solvers

• Replaced Grafiki’s use of concrete CrsMatrix 
class with abstract RowMatrix
– RowMatrix user provides implementation of key 

operations (SpMV, norms, etc.)

• New Chapel-based RowMatrix uses edge lists 
directly from Chapel to perform matrix 
operations – no data copy
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Approach 1:  Chapel program calls Grafiki 
through Chapel’s C interface 
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EdgeLists

Chapel creates EdgeList in 
BlockDomain arrays

Each Chapel locale directly 
calls C function (in 
coforall) with pointer to its 
local data

C function instantiates 
RowMatrix from 
EdgeList pointers

C function calls Grafiki

Grafiki computes 
using 
RowMatrix

Pro:  Simple proof-of-concept for data sharing
Con:  Intrusive to user:  needs to link with Trilinos and Grafiki



Approach 1 details:  Coordinating Chapel 
locales and MPI ranks

• Numbers of Chapel locales and MPI ranks are equal
• Calls from Chapel to Grafiki must be made from each 

locale in parallel
– All locales must enter Grafiki together to avoid hanging in 

Grafiki’s MPI collective communication
– Chapel coforall launches one task per locale

• Locales provide pointers to local edge list arrays
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coforall loc in Locales {

    on loc {

       var subdom = edgelist.localSubdomain();

       call_C_function(c_ptrTo(edgelist[subdom.low]), …);

    }

}

Image is Unclassified



Approach 2:  Separate Chapel and Grafiki 
processes share data in mapped memory
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EdgeLists

Chapel creates EdgeList in new 
shareBlockDomain arrays that 
use mmap memory

Chapel program signals (via 
POSIX semaphore) external C 
process to begin

C process instantiates 
RowMatrix from 
EdgeList pointers in 
mmap’ed memory

C process calls Grafiki, 
signals Chapel when done

Grafiki computes 
using 
RowMatrix

Less intrusive:  user uses Chapel as usual, only substituting 
shareBlockDomain for BlockDomain for shared data

New shareBlockDomain uses shared memory
 (mmap) on each compute node



Approach 2 details:  new shareBlockDomain
• Chapel Domains 

– describe distribution of data across locales (processors)
– manage global address space indexing

• Chapel’s Block Domain assigns contiguous chunks of 
global arrays to locales
– Each locale’s local array is a separate allocation

• New shareBlock Domain replaces the 
local array allocation with mmap regions 
in shared memory
– Separate mmap backing file for each 

shared array
– Backing file names are shared between 

processes through tiny meta-data file
– Chapel users simply substitute 

shareBlock for Block in their code
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EdgeLists
mmap

mmap

mmap



SemaphoreSemaphore

Approach 3:  Chapel and Containerized Grafiki 
further simplify user experience
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EdgeLists

Least intrusive:  Container handles details of building and
running C process and Grafiki

New shareBlockDomain uses shared memory
 (mmap) on each compute node

Container image provides pre
-built C process and 
Grafiki libraries that run as 
in Approach 2.

Chapel creates EdgeList in 
new shareBlockDomain arrays
that use mmap memory

Chapel program signals external C process to 
begin via pseudo-semaphore (mmap int)



Demonstrations done with Chapel on MPI 
and SMP systems

• MPI-enabled Chapel on Cray / Haswell 
(mutrino)
– Single locale / rank per node, multiple nodes

• Shared-memory Chapel on Xeon (kahuna)
– Single node, multiple locales / ranks per node
– Uses containerized Grafiki with Singularity

• Compare 
– approach One – Chapel’s C interoperability
– approach Two – separate processes 
– Look at Chapel label propagation and Grafiki hitting times
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Using mmap memory shows no performance 
penalty against a Chapel’s usual memory
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Bcsstk29.mtx
600k nonzeros
14k rows & columns



Using mmap memory shows no performance 
penalty against a Chapel’s usual memory
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Bcsstk29.mtx
600k nonzeros
14k rows & columns

Kahuna used chapel 
SMP 1.23, and we were 
unable to run approach 
1 on more than one 
locale



Using mmap memory shows no performance 
penalty against a Chapel’s usual memory
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Bcsstk29.mtx
600k nonzeros
14k rows

mmap memory 
performs equal to 
Chapel’s usual memory 
when comparing 
approach One and Two



Using mmap memory shows no performance penalty 
against a Chapel’s usual memory
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GAP_kron.mtx
4B nonzeros
134M rows



Using mmap memory shows no performance penalty 
against a Chapel’s usual memory
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Kahuna used chapel SMP 1.23, 
and we were unable to run 
approach 1 on more than one 
locale

GAP_kron.mtx
4B nonzeros
134M rows



Using mmap memory shows no performance penalty 
against a Chapel’s usual memory
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GAP_kron.mtx
4B nonzeros
134M rows

There is a noticeable loss of performance in the 
Chapel label propagation using mmap memory. 
We hypothesize that this is due to using Chapel 1.23’s 
Block Domain as a template for share block. 



Using mmap memory shows no performance penalty 
against a Chapel’s usual memory
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GAP_kron.mtx
4B nonzeros
134M rows

We still observe no performance 
penalty when using the mmap 
memory in the C++ program



Future Work

• Extend operability to different Chapel 
distributions
– Option for chapel to accept a user defined 

allocator

• Analyze container performance
• Analyze Chapel and C++ integrated code 

against pure Chapel implementation
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Approach 3 details:  Containerized Grafiki
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Container software stack significantly different than 
Chapel requirements

Created container to include our software stack
- Alpine 3.12, GCC 9.3, MPICH 3.2, OpenBLAS,        
Trilinos (develop branch), and Grafiki
- Custom Grafiki-connector code

Built and tested as OCI (Docker) container
Converted to Singularity SIF on HPC clusters
Challenge: While mmap memory works across 

containers, POSIX Semaphores do not!
Semaphores created on parent process stack, 
unusable in container after namespace creation 
Solution: Implement “pseudo-semaphore” signaling 
mechanism using a mmap int
Tested and validated with MPI (Kahuna)

More refinement of container image to continue

Containers allow researchers to blend tailored software 
capabilities with user software requirements  


