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Simple solutions to complex problems
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• Complex problem is 3D fuel fire radiating to an object 
• Simple solution is adiabatic flame assuming equilibrium 

and air entrainment. 
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Chemical equilibrium attained when 
the chemical potential is minimized

3

All we need is specific heat and an equation of state.
Melting point at elevated pressure is one way to test EOS!

Cp = a1T
−2 + a2T

−1 + a3 + a4T + a5T
2 + a6T

3 + a7T
4

S = Cp
T dT∫

H = Cp dT∫

µo

RT
= Ho

RT
− So
RT

Chemical Potential at 1 bar

Chemical Potential:

µi

RT
= µi

o

RT
+  imperfection terms which are functions of the EOS



History of Equation of State at Sandia
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High pressure, temperature EOS basics
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BKW, covolume based JCZ, intermolecular 
potential based

center
of mass

CH2O
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!!
Cp = ∂H / ∂T( )

P

!
h= Cp∫ dT

!!
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Water EOS
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Detonation predictions
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           Mean Absolute Error  RMS Error
JCZSa   1.76%     2.37%
Exp-6b   1.90%     2.51%
JCZS2i  1.73%     2.34%
aHobbs, M. L., Baer, M. R., McGee, B. C., Propellants, Explosives, Pyrotechnics, 24, 269-279 (1999).
bFried, L. E., Howard, W. M., Souers, P. C. 12th International Detonation Symposium, San Diego, CA p. 567 (2002)

Awesome!



Air at low pressure, high temperature
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Air at 0.01 atm
P = 0.01 atm, improved Cp

1950’s
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Air at high temperature and pressure
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Air Compressibility Air at 100,000 atm
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Air shock from TNT detonation
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Quick hands on tutorial
(best to do while running TIGER)

§ CTH-TIGER is 
distributed with CTH

§ CTH-TIGER can be 
coupled to CTH or run 
as a stand-alone-code.

§ The users manual is 
built into the code.

§ Philosophy for code is 
to provide a fast, 
robust, explosives 
calculator to answer 
many questions. We’ll 
discuss a few.
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Adiabatic flame calculation (H2 + 0.5O2)
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Adiabatic flame calculation (H2 + 0.5O2)
1 atm: Glassman says 3080 K 20 atm

3073 K Cheetah V8 gives 2990 K Cheetah V8 gives 3427 K



CJ Calculation (HMX at 1.89 g/cc)
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Point calculations for quick cookoff mechanism
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Run with input file, in

Here’s the generic reaction 
and reaction enthalpy



Some TIGER updates since 2017
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o We have been improving TIGER’s solvers. Our main code 
developer is the author of Cantera open source software.

o We have added native SESAME table generation (this will be 
the remainder of the discussion).

o Here is the old methodology:

§ Tmax | START--->--->--->---, |    
§ |                     v |
§ | .---<---<---<---<---' | 
§ | v                     |
§ | +--->--->--->--->---, |
§ |                     v |
§ Tmin | END-<---<---<---<---' |
§ |_______________________|
§ Vmin Vmax



Creating SESAME tables with TIGER

o Old method of generating table (input deck):
o composition, hmx, 1
o geos, bkw
o point, T, 1000, p, 1000 
o plt, T, V, P, E, S
o isoline, T, 6000.0, V, 0.3, 177, 1000.0,log
o isoline, T, 5937.5, V, 1000.0, 177, 0.3,log
o isoline, T, 5875.0, V, 0.3, 177, 1000.0,log
o …
o isoline, T, 325.0, V, 1000.0, 177, 0.3,log
o isoline, T, 300.0, V, 0.3, 177, 1000.0,log
o isoline, T, 298.0, V, 1000.0, 177, 0.3,log
o exit

o New method: create input deck using “mkin. The new calculation 
order is the same, but the input deck only considers point calculations. 
As such, failures can be easily restarted with new P,T guesses. 
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TIGER SESAME Help
§ INPUT > help, mki

§ help, mki

§ ***** Help for mki (makes in0 for generating SESAME data) *****
§

§ mki produces an input deck (in0) for creating EOS data for SESAME

§ tables. This can be done using a variety of isolines that take
§ advantage of the previous TIGER solution in this fashion:

§ ._______________________.

§ Tmax | START--->--->--->---, | 1st isoline (Tmax isotherm)
§ |                     v |

§ | .---<---<---<---<---' | 2nd isoline
§ | v                     |

§ | +--->--->--->--->---, | ...

§ |                     v |
§ Tmin | END-<---<---<---<---' | last isoline (Tmin isotherm)

§ |_______________________|

§ Vmin Vmax
§

§ BCAT requires this format of output from TIGER. However,

§ periodically the TIGER solver fails in the middle of the isoline.
§ Starting up the calculation in the middle of the failed

§ isotherm is difficult and a bookkeeping nightmare. One solution is

§ to substitute point calculations for the isoline calculations.
§ The new calculation order is the same, but the input deck only

§ considers point calculations. As such, failures can be easily
§ restarted with new P,T guesses.

§

§ The volumes are incremented logarithmically and the temperatures
§ are evenly spaced.

§

§ INPUT PARAMETERS:
§ t0 [=] initial temperature              (default is 298 K)

§ tf [=] final temperature                (default is 6000 K)

§ nt [=] number of temperature increments (default is 110)
§ v0 [=] initial volume                   (default is 0.35 cc/g)

§ vf [=] final volume                     (default is 1000 cc/g)
§ nv [=] number of volume increments      (default is 177)

§

§ EXAMPLE INPUT: mki, t, 298, 6000, 110, v, 0.35, 1000, 177
§ 1) mki, t, 298, 6000, 110, v, 0.35, 1000, 177

§ 2) mki

§
§ NOTES: the t and v can be interchanged

§ 1) the t and v can be interchanged

§ 2) if just mki is input, then the default values above are used
§ 3) default composition is HMX. Change Composition in in0 as desired 19

mkin Procedure
§ help, ses

§ ************************ Help with ses ************************

§

§ Create both an ascii and binary (201, 301) SESAME file using
§ data in all.plt located in the local directory. The (ses)

§ command assumes the reference state is 1 atm and 298 K. The
§ reference density is used to numerically calculate the

§ isothermal bulk modulus (bref). The SESAME files are created

§ without an energy shift (ESFT). If desired, the energy shift
§ should be performed within either BCAT or CTH.

§

§ An example using TIGER’s ses command:

§ ses,nv,178,nt,110,fz,152,mw,296.17,ro,0.5,id,1234,dt,111321
§ nv is the number of volumes (178) in the all.plt file.

§ nt is the number of temperatures (110) in the all.plt file.
§ fz is the formula number giving the number of electrons

§ in the reactant mixture. This is output after every

§ composition command.
§ mw is the molecular weight of the reactant mixture. Similar

§ to fz, this is output after every composiiton command.

§ ro is the ref. density from which the isothermal bulk
§ modulus, 'kref' is calculated.

§ id is the four digit matid for the SESAME table.

§ dt is the six digit date.
§



TIGER SESAME Help (continued)
§ Procedure for creating a SESAME table from scratch

§ 1) Create TIGER input deck using 'mkin' to generate EOS data.
§ 2) Create tiger.plt file: tiger < in0 > out0

§ 3) Rename tiger.plt all.plt, remove 2nd header, use 'sfix' command.
§ if 'number of v changes' > 0, mv fixed.plt to all.plt.

§ 4) Run 'ses' command.
§ NOTE: step 2 may require some iteration if TIGER fails to converge.

§ Split in0 into small files and use better TP guesses for failed points.
§ Concatonate tiger.plt files into all.plt file with single header.

§

§ Procedure for checking a SESAME table: check TIGER cj with BCAT cj:

§ 1) Use ‘eos’ part of a CTH input deck as BCAT input deck, bcat.in:
§ eos

§ mat1 sesame user eos=1234 feos='./b1234' esft = 1
§ endeos

§ 2) Run BCAT with these commands
§ OPTION?

§ set eos
§ ENTER NAME OF CTH INPUT FILE.

§ bcat.in
§ OPTION?

§ cj mat 1
§ ENTER RZRO, PZRO, AND EZRO FOR UNBURNED EXPLOSIVE

§ 1,0,0
§ 3) BCAT returns the CJ state. Note that ‘esft’ in the bcat.in

§ was set to 1. Do not set this to zero, since zero is a flag
§ within BCAT to use a large energy shift. Energy units in BCAT

§ are in ergs, so 1 is essentially zero. You could also use
§ something like 1e-6 if you want, but don't use zero.

§ 4) Compare the BCAT cj velocity with the TIGER cj velocity.

20



Example of generating a SESAME Table
§ Do a CJ calculation to see range for V

INPUT > com, hmx,91, etc.

§ com, hmx,91,etc.
§

§ Reactants:

§ Initial mixture:
§ Heat of formation = 42.16 cal/g

§ Standard energy = 42.15 cal/g
§ Standard volume = 0.5381 cc/g

§ Standard entropy = 0.000 cal/(g-K)
§ Standard density = 1.858 g/cc

§ Number of gaseous constituents = 66
§ Number of condensed constituents = 1

§ Molecular formula of mixture (ave. mw = 286.748 g/mol)

§ Elements moles % moles % mass
§ c 4.4565 16.264 18.667 

§ h 7.9571 29.039 2.7969 
§ n 7.3292 26.748 35.801 

§ o 7.6583 27.949 42.730 
§ e 27.401 0.0000 0.52421E-02

§ Oxygen balance: -29.20 %
§ Formula number (FZ): 147.27 number of electrons in mixture formula

21

§ INPUT > c-j, p, 1, rho, tmd
§ ****** The Chapman-Jouguet condition ******

§ The shock velocity = 8.8173500E+03 m/s

§ The particle velocity = 2.2206835E+03 m/s
§ The speed of sound = 6.5966665E+03 m/s

§ Make input deck (mkin):
§ mki, t,275,6000,230,v,0.35,1000,100

§ This creates in0 with 23000 point 
calculations. Make sure the 
composition is correct and then run 
this file with tiger.

§ Run tiger until failure:
§ Tiger < in0 > out0
§ Out TP solvers are robust enough to easily restart 

this calculation.

§ cp in0 in1 and run again, repeat

§ cat tiger*.plt > all.plt
§ vi all.plt to remove all header files

except on line 1.
§ INPUT > sfix, nt,230,nv,100

§ mv fixed.plt all.plt
§ INPUT > ses,nv,100,nt,230,fz, 

147.27,mw,286.748,ro,1.8,id,3333,dt,060722

§ Took me about 30 
minutes to make EDC 
SESAME table.



Summary and Conclusions
§ JCZS database was improved with piecewise specific heat fits of 

NASA’s latest specific heat parameters (15th Det. Symp). Two 
new databases were created: JCZS2 (no ions) and JCZS2i (ions).

§ We have combined these two databases into one: JCZS3. A key 
word is used to toggle ions on or off. We have also 
implemented a molecular weight limiter when selecting 
possible product species.

§ We have refit all condensed specific heat fits to avoid spurious 
roots when calculating the chemical potential. All melting 
points have been checked with data.

§ We are creating TIGER SESAME tables for a variety of materials
§ Make T,V grid more dense for better convergence in expanded states.
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