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I. EXECUTIVE SUMMARY

Data-driven approaches are increasingly being adopted to study magnetic confinement
fusion (MCF), magneto-inertial confinement fusion (MIF), and inertial confinement fusion
(ICF) schema. These methods have demonstrated applications in this space ranging from
automated extraction of features from experimental data and dynamical systems control dur-
ing the operation phase to intelligent optimization algorithms and multi-objective statistical
inference. At their heart, data-driven applications rely on models which are computation-
ally cheap to evaluate and/or greedy model evaluation that exploits the trade-off between
exploration of unsampled model inputs and an approximate understanding of output struc-
ture based on previous sampled inputs. For the computationally expensive and complex
multi-physics models required to understand fusion experiments this typically means apply-
ing more-or-less black-box machine learned models that are quick to evaluate, transferring
the primary effort to an offline learning phase whereupon the algorithm discovers a mapping
directly from physics model input space to (typically highly spatio-temporally integrated)
experimentally observable quantities. At the same time, it is expected that there is still
significant unknown physics important for understanding ICF/MIF targets en route to an
engineering-relevant end-state for inertial fusion energy (IFE) designs. Improving the res-
olution of experimental diagnostics and physical accuracy of simulation tools is clearly a
requirement on this path. Due to significant computational and experimental costs, it is
critical that the fusion community continue to push towards the application of state-of-the-
art reduced order modeling approaches capable of capturing the dynamics of the system
under consideration with high spatio-temporal fidelity. In this white paper, we provide
a brief description of the status of the application of machine learning to MIF/ICF and
highlight exemplars of current state-of-the-art in the ideas machine-learning based ROM
techniques. The adaptation of these methods to problems in ICF presents a significant open
challenge that should be addressed by the community to accelerate physics discovery and
aid in design of IFE relevant systems.

II. INTRODUCTION

Significant effort in high energy density physics and ICF related research has been placed
on applying methods in data science and statistics to accelerate experiment design, physics
discovery, and improve uncertainty quantification. In essentially all cases, these efforts
involve the evaluation of one or more forward models of the form

f(X(θ, t), θ)→ {gi}, (1)

where f represents a composition of an often-complex set of simulations (e.g. multi-
resolution or simulation restarts) with experiment design parameters θ, and synthetic di-
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FIG. 1. Learned emulators or surrogate models generally trade online computation cost for offline

cost, but often lose additional desirable capabilities of the original full order model.

agnostic calculations resulting in a set of (potentially time dependent or spatio-temporally
averaged) states X(θ, t), which maps to a set of experimental observables {gi}. To date, the
program of machine learning as applied to ICF modeling has largely consisted of attempting
to learn a function f̂(θ)→ {gi} that maps directly from the set of model inputs, θ, directly
to the set of observables {gi} without reference to the time dependent physical system state.

The function f̂ is typically estimated by optimizing an objective function comparing the
true function f to f̂ on a set of example points

L(f, f̂ ,wi) ≡
∑
p

d(fp, f̂p(wi)) +R(∗), (2)

over any free parameters wi prescribing f̂ . In the above, d is metric describing the discrep-
ancy between the f and f̂ , while R is an additional function which may be used to regularize
the problem or enforce constraints in the optimization.

We have selected as an example, the work of Refs. 1–3 for this purpose, but the qualitative
aspects of this example transfer to other recent works (e.g. Refs. 4–7) that are more-or-less
variations on the theme of optimizing Eq. 2 over parameters wi, with the outputs of f and
f̂ being highly integrated measurements. In Fig. 1 we present a qualitative assessment of
the impact of this type of model emulation on a handful of non-exhaustive, correlated, and
admittedly incompletely defined set of traits that could describe a modeling approach. The
figure indicates qualitative judgements for relative relations between the different traits. It
is indicated for example that application of the FOM, f , for an experimental analysis in-
volves significant online computational costs. In this case, a single FOM evaluation takes
order 10-100 CPU hours on an HPC system, with O(10k) simulations needed to conduct

an analysis of a single experiment. Contrast this with the learned model, f̂ , for which the
evaluation time is < 1 ms on a personal laptop. This computational cost gets shifted into
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a one-time offline computational cost to generate training data and optimize the machine
learning model (provided the training data domain is sufficient to cover realistic experi-
mental outcomes). At the same time, while training a model may require generation and
storage (data burden) of somewhat more data than a single experimental analysis, this also
presents a greedy approach, where new data generated only when needed to tune the model.
Clearly, the learned model computational cost for analysis of experiments scales much more
favorably with the number of experiments to be analyzed. We note however that this comes
at the expense of physical flexibility. For example, in the case under consideration, a frozen
in flux law was assumed for the magnetic field along with a static fusion fuel background
in the FOM. If these assumptions are to be lifted, or, if one wishes to work in a spherical
rather than cylindrical geometry, the emulator must be retrained. We also indicate a re-
duced “physical fidelity” of the surrogate model as the neural network-based approach does
not fundamentally enforce physics constraints, but merely is shown to agree quantitatively
with the physics model over the domain from which training data was drawn. Therefore,
extrapolation presents a high risk for faulty analysis. In addition, as a black box map, the
emulator may obscure the physics-based reasons for the model response.

III. BASIC RESEARCH NEEDS

The approach of directly surrogating inputs to outputs currently appears to be the most
mature application of machine learning in the ICF community. The continued development
of these approaches will certainly lead to additional discovery and therefore represents a
continuing and crucial basic research need. However, due to the relative maturity of this
paradigm, here we highlight areas in which basic research is required to push the types of
traits indicated in Fig. 1 in new and favorable directions for ICF and IFE applications.
Rather than being overly prescriptive, we will point out approaches that exist within the
broader machine learning and reduced order modeling communities that have yet to see
widespread adoption in the ICF community, indicating the potential impact that could be
observed from adapting these methods to ICF applications.

A. Develop and integrate surrogates of physics/algorithm submodules

One way to improve the physical fidelity and flexibility of surrogate models is to sur-
rogate submodules of multiphysics codes. Recently, for example, Ref. 8 demonstrated the
inclusion of a neural network model to emulate atomic physics computations of non-local
thermodynamic equilibrium spectral opacities which was included inline with HYDRA cal-
culations. In Ref. 9, the inviscid Euler equations are solved using a convolutional neural
network in the pressure projection component of the velocity update step to enforce incom-
pressibility. This replaces the typical approach of numerically solving the large sparse linear
system corresponding to the associated Poisson equation, which represents the most compu-
tationally intensive component of the algorithm. In the context of magneto-hydrodynamics
(MHD) equations, for example, some algorithms for magnetic diffusion and radiation trans-
port involve numerically solving large sparse linear systems, so that a similar approach may
approximate the solution or be used to precondition iterative solvers, potentially signifi-
cantly reducing computational costs. We also note that there is a growing effort to apply
ideas in randomized linear algebra to matrix decomposition and data-driven discovery of
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sparse representations10–13. Application of these methods to ICF relevant codes may prove
fruitful for improving algorithm efficiency. Finally, we note recent work in the context of
large eddy simulations (LES) to utilize neural networks to replace typically gradient-based
subgrid scale (SGS) models14–16. Adapting these methods to ICF and HED problems with
a more realistic physics is an open and potentially transformative application space. As for
any algorithm development endeavor, assessing the computational cost – physical accuracy
trade-off of these methods will be critical, requiring input from experts in hydrodynamic
and MHD numerical methods as well as in the fields of data science and statistics.

B. Develop surrogate models for dynamical system evolution

A more holistic approach of directly surrogating the dynamical evolution of simulation
field quantities, i.e. developing reduced order models (ROMs), is another active area of
research whose adaptation to ICF problems presents a basic research challenge. Recent ef-
forts along these lines have treated problems including 2D chemically reactive flows, shock
propagation in 1D Burger’s equation17, nonlinear evolution of the Rayleigh-Taylor instabil-
ity18, and many others19,20. These fall into a wide range of different categories ranging from
more “standard” linear projection based methods (e.g. POD) to those based on nonlinear
methods, such as the work of Ref. 17, where a CNN autoencoder architecture is trained
to nonlinearly project the data onto a low-dimensional manifold where the dynamics can
be optimally, and kinematically consistently evolved. Furthermore, by incorporating various
regression methods in the ML community, it may be possible to ensure that such models may
maintain flexibility and fidelity over a range of possible initial conditions, such as variations
in geometry or other parametrized boundary conditions (see e.g. Ref. 17). Of particular
interest, many of these methods allow analytic access to gradients or enable computational
speedups of high enough order so that sensitivity methods for uncertainty quantification are
readily applicable to develop deeper physical insight. Importantly, many of the most mature
approaches in projection based ROM methods fundamentally fail in the presence of traveling
waves, transients, intermittent phenomena, continuous spectra, and strong nonlinearity. A
number of solutions have been proposed to address these issues in specific cases18,21,22. How-
ever, the development of more generalized solutions appropriate to problems in ICF/MIF
will be required to apply new developments in the ROM space.

C. Pursue data-compression ideas from machine learning and compressed sensing

A critical consideration when pursuing the application of machine learning to problems
in ICF is the significant data burden represented by such an endeavor. Complex 3D simu-
lations with potentially highly resolved spatio-temporal features in multiple self-consistent
field quantities often result in the need for significant inline data reduction strategies. These
approaches typically involve expert-based decisions on what data can be safely discarded
while maintaining integrity of the fundamental physics insights derived. Clearly the de-
velopment of methods outlined above require access to sufficiently large collections of data
containing the quantities and fields of interest to be learned by ML models. Data compres-
sion ideas utilized in ROM approaches, such as more standard linear decomposition methods
(e.g. SVD, Fourier) that promote sparsity, auto-encoding neural networks6,17,23, mrDMD21,
and even ideas from the field of compressed sensing should be brought to bear for reducing
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the data burden presented by the training requirements for these methods. Expert driven
decisions regarding such representations (e.g. spherical/cylindrical harmonic bases, wavelet
decomposition, etc.) will likely also feed into improved understanding in the application of
data driven surrogate modeling efforts outlined above.

D. Develop and impose physics constrained models

Before concluding, we feel it important to emphasize that, as with any algorithm, there is
potential for data-driven methods to produce unphysical results. Indeed, since many of these
approaches lack insight into inherent physics constraints such as conservation laws or con-
sistency of transport coefficients, or geometric constraints such as divergence-free magnetic
fields, the risk is generally greater that ML based methods will fail to preserve important
physical properties, even within the domain over which a given model was trained. Several
approaches have been developed to produce results that approximately24 or rigorously25,26

obey physical laws. While it is not clear that these approaches significantly improve the
fidelity of the results obtained, they may allow for better interpretability and improved ex-
trapolatory power of the learned models. The continued development of such approaches is
therefore critical to application spaces such as ICF where, for-example, performance cliffs
and shifts in physics regimes may result in drastically different results between simulations
and ML models that may go unnoticed. As a final note, we highlight that experimental data
is also beginning to play a greater role in hunting for ways to improve the physical fidelity
and quantification of uncertainty of simulation results (see e.g. Refs. 7 and 27). In the ICF
and more broadly HED application spaces, such methods will additionally prove invaluable
as they may reduce the data requirements for training machine learning models where the
cost of simulations and experiment will continue to result in a data-starved environment.

IV. CONCLUSIONS

We have highlighted several areas in which basic research is needed to adapt existing
methods in the data science literature to problems in ICF. We have chosen to focus on
methods that reach well beyond recent successful work at adapting machine learning to
address the problem of modeling the direct relation between simulation inputs and observ-
ables, however, we emphasize that there is still significant room to extend and apply such
methods. while this discussion is incomplete, the overriding message that we wish to com-
municate is that extensive research is needed to adapt these promising approaches to the
relevant physics problems. Navigating these ideas through the valley of death, such that
the full promise of these methods can be realized in this application space should represent
a high priority for basic research efforts on the near term. The cross-cutting nature of ML
applications to theory and simulation will require continued collaboration across academia
and national laboratories among experts in the development and application of algorithms
to problems in ICF and practitioners of data science.
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