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UNCERTAINTY QUANTIFICATION FOR RADIATION TRANSPORT

CONTEXT AND CHALLENGES

The Electromagnetic Spectrum | kT, “The thermal energy at room temperature
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From Opensource Handbook of Nanoscience and Nanotechnolo
licensed under the Creative Commons Attribution 2.5 Generic license.

20 keV photons

Finely Subzoned Ag Detector
‘Above Bone/Tissue Facet Model
Has Over One Million Facets
From Visible Human Project®

High Fidelity
3D Radiation Transport

ITS-Simulated Dose(Ag) Distribution

Figures courtesy of Brian Franke and Shawn Pautz

High-fidelity radiation transport modeling and simulation with HPC

@_ Severe simulations budget constraints

@_ Significant UQ parameter dimensionality driven by model complexity

Deconvolution strategies for parametric variance
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UNCERTAINTY QUANTIFICATION FOR MONTE CARLO RADIATION TRANSPORT
THE CHALLENGE OF UNDER-RESOLVED COMPUTATIONS

Input uncertainties | —> O —— | Compute statistics
Streaming
Particle
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UNCERTAINTY QUANTIFICATION FOR MONTE CARLO RADIATION TRANSPORT

THE CHALLENGE OF UNDER-RESOLVED COMPUTATIONS
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STOCHASTIC MEDIA IN RADIATION TRANSPORT
FROM REAL-WORLD APPLICATIONS TO NUMERICS

herical inclusions

|- | L |
r L = L

1D Markovian geometry - Material type
forms continuous Markov process

G )
S Simplify
\&6\6‘ (closed-form

solutions)

kovian/Poisson

I
1D “Cell” geometry - Cell boundaries
uniform, but material fill random

Gaussian process

REAL WORLD 1D APPROXIMATIONS
MODELS
Real-world examples
)

3D COMPUTATIONAL

Two-phase flow in Boiling Water Reactor nuclear power coolant (1)
Pebble distribution in Pebble-Bed nuclear power reactors (2)
Distribution of TRISO fuel particles in Pebble-Bed pebble (3)

)
)
@_ Raleigh-Taylor instabilities in Inertial Confinement Fusion reactors

@ Accident scenarios in various nuclear power reactor cores
Deconvolution strategies for parametric variance
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PLAN AND CONTRIBUTIONS OF THE TALK
FOCUS ON VARIANCE AND STOCHASTIC MEDIA

Contributions of this talk:

@ How can we obtain accurate parametric variance estimations given a limited computational
budget for particle histories?
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PLAN AND CONTRIBUTIONS OF THE TALK
FOCUS ON VARIANCE AND STOCHASTIC MEDIA

Contributions of this talk:

@ How can we obtain accurate parametric variance estimations given a limited computational
budget for particle histories?

@ How can we extend this to account for limited stochastic media realizations?

Bonus point

@ Designed a verification test case, i.e. closed form solution for necessary statistics

Deconvolution strategies for parametric variance 4/15 I
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MC RT FOR STOCHASTIC MEDIA
ABSTRACT MATHEMATICAL FORMULATION

What are the sources of variability /uncertainty?
@_ Uncertain parameters, e.g. cross sections: &
@_ MC RT (internal) randomness: 7

@_ Material arrangements/realizations: w
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MC RT FOR STOCHASTIC MEDIA
ABSTRACT MATHEMATICAL FORMULATION

What are the sources of variability /uncertainty?
@_ Uncertain parameters, e.g. cross sections: &
@_ MC RT (internal) randomness: 7

@_ Material arrangements/realizations: w

What is the mathematical counterpart of a MC RT simulation?

@_ Particle histories can be interpreted as elementary events: f = (&, w, n)

@ MC RT Qol can be interpreted as an average of f over the histories with fixed UQ parameters and material arrangements

N.
1

n . ~
Qe w) =B,y [F(&w,m "FT 3 F (6w,n?) ¥ Qu, (€ w)
n j=1
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MC RT FOR STOCHASTIC MEDIA
QUANTITIES OF INTEREST AND UQ PROBLEM

Problem formulation
We focus on statistics over material arrangements

def

Pe(€) = Eo Q& w)],

while the UQ analysis aims at evaluating the parametric variance, i.e. Vare [Pz(&)]

Deconvolution strategies for parametric variance 6/15



MC RT FOR STOCHASTIC MEDIA
QUANTITIES OF INTEREST AND UQ PROBLEM

Problem formulation
We focus on statistics over material arrangements

def

Pe(€) = Eo Q& w)],

while the UQ analysis aims at evaluating the parametric variance, i.e. Vare [Pz(&)]

Brute force approach
Vare [Ps(6)] ~ Vare [By,, (6)]

where

1 Yo ef ~T
Pu(8) ~ 5 D @, (6,0 ™) € By (©).

“ k=1

Is this correct/efficient?

Deconvolution strategies for parametric variance 6/15



UNDERSTANDING THE VARIANCE CONTRIBUTIONS
FROM THE LAW-OF-TOTAL VARIANCE TO DECONVOLUTION

def 1 N
B O % 5 3 A (6w,
Definitions
def 1

A, (6 w) & —sz(g,w n?)
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UNDERSTANDING THE VARIANCE CONTRIBUTIONS
FROM THE LAW-OF-TOTAL VARIANCE TO DECONVOLUTION

Definitions
def 1

A, (6 w) & —sz(g,w n?)

Let’s start by 'decomposing’ the variance contribution (law-of-total-variance)
Var []FK‘,W] = Vare []E,MJ [JIB’X,WH + E¢ {Var,,,u [I@;,w]]

@ The expected value estimators are all unbiased

Enw [PR,] = =Pu(é,w)
@_ Law-of-total-variance can be applied recursively
g [7hE
_ Var, [Q(&,w)] “ Ny
E )
Vary.. [BR, ] = P
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UNDERSTANDING THE VARIANCE CONTRIBUTIONS
FROM THE LAW-OF-TOTAL VARIANCE TO DECONVOLUTION

Definitions
def 1

A, (6 w) & —sz(g,w n?)

Let’s start by 'decomposing’ the variance contribution (law-of-total-variance)
Var []FK‘,W] = Vare []E,,,L,J [H}]TMH + E¢ [Varn‘u [I@;,w]]

@ The expected value estimators are all unbiased

Enw [P, ] = =Pu(é,w)
@_ Law-of-total-variance can be applied recursively
g [7hE
- Var,, [Q(€, w)] “L N
E )
Vary.. [BR, ] = P

Finally, we get

Var [Py, | = Vare [Ps] + B¢
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UNDERSTANDING THE VARIANCE CONTRIBUTIONS
CONTRIBUTIONS INTERPRETATION

What are the sources of variability /uncertainty?
@_ Uncertain parameters, e.g. cross sections: &
@_ MC RT (internal) randomness: 7
@_ Material arrangements/realizations: w

ﬁ [“,](\»w,\} ]
o Vare, £, w) o Ny
Var {]P’][\:,w] = Vare [Pg] +E; &} +E | ——————— |
_v—’ N, w . N, n J
Polluted variance Parametric variance "' R
Stochastic media | S ——
MC RT
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UNDERSTANDING THE VARIANCE CONTRIBUTIONS
CONTRIBUTIONS INTERPRETATION

What are the sources of variability /uncertainty?
@_ Uncertain parameters, e.g. cross sections: &
@_ MC RT (internal) randomness: 7
@_ Material arrangements/realizations: w

2 /- N
{“ [w,,(sw ]
~F . [Var, [Q(¢, w) L M
Var {]P’][\:,w] = Vare [Pg] +E; [Y = ]} +Ee | —— |
_v—’ N w . N, n J
Polluted variance Parametric variance A R
Stochastic media | S ——

MC RT
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— Exact
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VARIANCE DECONVOLUTION
NOTES ON PRACTICAL IMPLEMENTATION

Variance deconvolution recipe:

1 Measure the polluted variance

N 2
w5 - (e )
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VARIANCE DECONVOLUTION
NOTES ON PRACTICAL IMPLEMENTATION

Variance deconvolution recipe:
1 Measure the polluted variance
Ne

2
var [@RM] -8 = Nglf 1 Z (PNw E(l)) ZP 501)))
i=1

2 Measure the under-resolved statistics

W, o E. 2 (6w
Ee {yau][\?(i-W)]} +Ee |:J$ E\j:](\: ﬂ}

N T R 1% 60 @ ’
— AS? = — Qn, (€7, W) = = > Qn, (£, ')
Nngl; kaz:; m NwZ !

=1
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VARIANCE DECONVOLUTION
NOTES ON PRACTICAL IMPLEMENTATION

Variance deconvolution recipe:

1 Measure the polluted variance

1

Ne 2
=E a2
Var [By, ] - 8 = e DBl NGO Z]P’ (@)
-
2 Measure the under-resolved statistics

Ee {T\a’ar& [Q(&w)]] e |:E_b [Uf](£w>}

N, NyN,
N T R 1% 60 @ ’
= A8t = > | > | Qw, (67, 0™ = — > @, (67,0 )
NuNe i | No i " N g=1 '

3 Get the parametric variance by difference

Vare [Pg] — §* = §% — AS”

Deconvolution strategies for parametric variance 9/15
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RADIATION TRANSPORT
1D TRANSPORT IN STOCHASTIC MEDIA WITH UNCERTAIN PROPERTIES

[6)) (...) g(Ne)

¢
Material E?m [em~ 1 EtAm [em~ 1 Pm
A
w(z)m]]l]]l] (2)Ell-l TABLE: Uncertain cross sections properties
w

(..) (...)

1D slab, neutral particle, absorption-only mono-energetic steady state radiation transport

Normally incident beam with unitary magnitude
Random cross sections (m = A, B): 5y m(&n) = X, + 575, &m, where €4, &5 ~ U(—1,1)

Total number of material sections: N;,; = 10 (with Ax = 0.15 cm)

The Qol is the transmittance

10/15
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RADIATION TRANSPORT
1D TRANSPORT IN STOCHASTIC MEDIA WITH UNCERTAIN PROPERTIES

Transmittance: 7T(&,w) = exp [—7(§,w)], where
Slab optical thickness: 7(&,w) = Ax (Ny(w)%;4(64) + Np(w)Se 5(€8))
Material distribution: Nj(w) ~ B(Ni, Ps), where Ny(w) + Np(w) = Nior

Response Pg(&)

Pg(§) = Ey [T(E, w)]

Niot
= oxp [~Nit AxS p(€8)] D Bor (1) exp [—xAx(S 46 — S1¢p) ]
x=0
def Niot! . (Nyot —2) 0 0
By (x) = —————pa (1 —pa) """ exp [—QxAx(Et,A - Et,B)]
x! (Niot — x)!
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1D TRANSPORT IN STOCHASTIC MEDIA WITH UNCERTAIN PROPERTIES
EXACT SOLUTION FOR STATISTICS — PARAMETRIC VARIANCE

Vare [Pe] = Ee [Pe(€)’] — (Ee [P2(€)))”

where

B ) o1 [Nt sinh [xszfA] sinh [N,O,AthAB (1 - L) AxZ,AA]
Ee [Pe(€)] = exp [~NuwAxE} ] (;;Buxxx) AR Ny (L) &

and

] o) (o ] o [0, 0 )
0 t,

2NtozAth,B (1 - m)

Niot Niot sinh [(x +3)AxSfy | sinh [2Nw xSy (1 52 )] )

+2>° 3" Bu(@)Bu(y) x
=50 (@ +y)Axzp, 2N, AXEE, (1 - ;tht)
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RADIATION TRANSPORT
1D TRANSPORT IN STOCHASTIC MEDIA WITH UNCERTAIN PROPERTIES

N, N, ¢ MSE(S?)  MSE(S?)  Diff. [%]
~ 2 3200 8.2811e-6 7.4708e-5 88.91
N, N, C MSE(S®)  MSE(S®)  Diff. [%] 4 6400 3.9833e-6  2.0705e-5  80.76
2 400 1.7313e-4 3.6084e-3 95.20 16 8 12800 2.6616e-6 6.7252e-6 60.42
4 800 4.0763e-5 9.1886e-4 95.56 16 25600 2.1034e-6 3.0990e-6 32.12
2 8 1600 1.3829e-5 2.3302e-4 94.06 32 51200 1.8296e-6 2.0513e-6 10.81
16 3200 6.3738e-6  6.0617e-5  89.48 2 6400 47911e-6 2.5362e-5 81.11
32 6400 3.6007e-6 1.7405e-5 79.31 4 12800 2.8784e-6 8.0892e-6 64.42
2 800 5.1799e-5  9.4397e-4  94.51 32 8 25600 2.0873e-6  3.3810e-6  38.26
4 1600 1.4986e-5 2.4136e-4 93.79 16 51200 1.8619e-6 2.1960e-6 15.21 i
4 8 3200 6.6362e-6 6.3906e-5 89.61 32 102400 1.7596e-6 1.8532e-6 5.05 P
16 6400 3.7136e-6 1.7990e-5 79.35
32 12800  2.565le-6  5.963%e-6  56.99 TABLE: MSE (based on 5,000 repetitions) for the
2 1200 1-90;13'5 252;25'4 ggig parametric variance estimator, with (S2) and without
8 g 2488 ;:222}:_2— ?:8329:_2 80.07 (52) deconvolution, N¢ = 100 UQ samples and several
16 12800 2.5911e-6  6.2441e-6  58.50 choices of random material realizations N, and particle
32 25600 2.1348e-6  3.0310e-6  29.57 histories N;,. The total cost for each estimator is
C=N¢ XNy x Ny.
Deconvolution strategies for parametric variance 13/15 l




RADIATION TRANSPORT
1D TRANSPORT IN STOCHASTIC MEDIA WITH UNCERTAIN PROPERTIES

N, N, ¢ MSE(S?*)  MSE(S?)  Diff. [%]
~ 2 3200 8.2811e-6 7.4708e-5 88.91
N, N, ¢ MSE(S?)  MSE(S?)  Diff. [%] 4 6400 3.9833e-6  2.0705e-5  80.76
2 400 1.7313e-4 3.6084e-3 95.20 16 8 12800 2.6616e-6 6.7252e-6 60.42
4 800 4.0763e-5 9.1886e-4 95.56 16 25600 2.1034e-6 3.0990e-6 32.12
2 8 1600 1.3829e-5 2.3302e-4 94.06 32 51200 1.8296e-6 2.0513e-6 10.81
16 3200 6.3738e-6 6.0617e-5 89.48 2 6400 4.7911e-6 2.5362e-5 81.11
32 6400 3.6007e-6 1.7405e-5 79.31 4 12800 2.8784e-6 8.0892e-6 64.42
2 800 5.1799e-5 9.4397e-4 94.51 32 8 25600 2.0873e-6 3.3810e-6 38.26
4 1600 1.4986e-5 2.4136e-4 93.79 16 51200 1.8619e-6 2.1960e-6 15.21
4 8 3200 6.6362e-6 6.3906e-5 89.61 32 102400 1.7596e-6 1.8532e-6 5.05 i
16 6400 3.7136e-6 1.7990e-5 79.35
32 12800  2.565le-6  5.9639e-6  56.99 TABLE: MSE (based on 5,000 repetitions) for the
2 1600 1.9071e-5  2.5549e-4  92.53 parametric variance estimator, with (S2) and without
4 3200 7.0521e-6 6.6686e-5 89.42 &2 .
8 8 6400 38521e-6  109329e-5  80.07 (S ) deconvolution, N¢ = 100 UQ _samples and seve_ral
16 12800 2.5911e-6  6.2441e-6  58.50 choices of random material realizations N, and particle
32 25600 2.1348e-6  3.0310e-6  29.57 histories Ny,. The total cost for each estimator is
C= Ng X Nw X Nn.
@_ For fixed N¢ and N,;, MSE decreases if N, increases
Deconvolution strategies for parametric variance 13/15 l




RADIATION TRANSPORT
1D TRANSPORT IN STOCHASTIC MEDIA WITH UNCERTAIN PROPERTIES

N, N, ¢ MSE(S?*)  MSE(S?)  Diff. [%]
~ 2 3200 8.2811e-6 7.4708e-5 88.91
N, N, ¢ MSE(S®)  MSE(S®)  Diff. [%] 4 6400 3.9833¢-6  2.0705e-5  80.76
2 400 1.7313e-4 3.6084e-3 95.20 16 8 12800 2.6616e-6 6.7252e-6 60.42
4 800 4.0763e-5 9.1886e-4 95.56 16 25600 2.1034e-6 3.0990e-6 32.12
2 8 1600 1.3829e-5 2.3302e-4 94.06 32 51200 1.8296e-6 2.0513e-6 10.81
16 3200 6.3738e-6 6.0617e-5 89.48 2 6400 4.7911e-6 2.5362e-5 81.11
32 6400 3.6007e-6 1.7405e-5 79.31 4 12800 2.8784e-6 8.0892e-6 64.42
2 800 5.1799e-5 9.4397e-4 94.51 32 8 25600 2.0873e-6 3.3810e-6 38.26
4 1600 1.4986e-5 2.4136e-4 93.79 16 51200 1.8619e-6 2.1960e-6 15.21
4 8 3200 6.6362e-6 6.3906e-5 89.61 32 102400 1.7596e-6 1.8532e-6 5.05 i
16 6400 3.7136e-6 1.7990e-5 79.35
32 12800  2.565le-6  5.9639e-6  56.99 TABLE: MSE (based on 5,000 repetitions) for the
2 1600 1.9071e-5  2.5549e-4  92.53 parametric variance estimator, with (S2) and without
4 3200 7.0521e-6 6.6686e-5 89.42 &2 .
8 8 6400 38521e-6  109329e-5  80.07 (S ) deconvolution, N¢ = 100 UQ _samples and seve_ral
16 12800 2.591le-6  6.2441e-6  58.50 choices of random material realizations N, and particle
32 25600 2.1348e-6  3.0310e-6  29.57 histories Ny,. The total cost for each estimator is
C= Ng X Nw X Nn.
@_ For a given cost C = N¢ x N, x N,,, MSE increases if N,, increases
Deconvolution strategies for parametric variance 13/15 l




RADIATION TRANSPORT

1D TRANSPORT IN STOCHASTIC MEDIA WITH UNCERTAIN PROPERTIES ‘
N, N, ¢ MSE(S?)  MSE(S?)  Diff. [%]
5 =2 . 2 3200 8.2811e-6 7.4708e-5 88.91
N, N, ¢ MSE(S®)  MSE(S®)  Diff. [%] 4 6400 3.0833e-6  2.0705e-5  80.76
2 400 1.7313e-4 3.6084e-3 95.20 16 8 12800 2.6616e-6 6.7252e-6 60.42
4 800 4.0763e-5 9.1886e-4 95.56 16 25600 2.1034e-6 3.0990e-6 32.12
2 8 1600 1.3829e-5 2.3302e-4 94.06 32 51200 1.8296e-6 2.0513e-6 10.81
16 3200 6.3738e-6 6.0617e-5 89.48 2 6400 4.7911e-6 2.5362e-5 81.11
32 6400 3.6007e-6 1.7405e-5 79.31 4 12800 2.8784e-6 8.0892e-6 64.42
2 800 5.1799e-5 9.4397e-4 94.51 32 8 25600 2.0873e-6 3.3810e-6 38.26
4 1600 1.4986e-5 2.4136e-4 93.79 16 51200 1.8619e-6 2.1960e-6 15.21
4 8 3200 6.6362e-6 6.3906e-5 89.61 32 102400 1.7596e-6 1.8532e-6 5.05 r
16 6400 3.7136e-6 1.7990e-5 79.35
32 12800  2.565le-6  5.963%e-6  56.99 TABLE: MSE (based on 5,000 repetitions) for the
i ;ggg ;ggge'g g-gggze'g gsig parametric variance estimator, with (S2) and without
. e-! B e- . Q2 .
8 8 6400 38521e-6 193295 8007 (S ) deconvolution, N¢ = 100 UQ .samples and sevelral
16 12800 2.5911e-6  6.2441e-6  58.50 choices of random material realizations N, and particle
32 25600 2.1348e-6  3.0310e-6  20.57 histories N;,. The total cost for each estimator is
C=N¢ XNy X Ny.
@ The difference between S? and S decreases if C = N¢ x N, X N, increases
Deconvolution strategies for parametric variance 13/15 l




RADIATION TRANSPORT
1D TRANSPORT IN STOCHASTIC MEDIA WITH UNCERTAIN PROPERTIES

5000 Est. Repetitions -- (Ng, Ny, Nj) = (100,8,2)

700 1 —— Varg[P;] -- Exact
600 4 — Varlf] - Exact
— Eg[vary[Q1l/N,, -- Exact
500 A — Eglarlll/N,, - Exact
s = &
= 400 =P
Eel ~
2 300 £ £glvar(Qu, )N,
2 ]
B 3 Eglvary[QIlN,
200
I
100 4
0 7 T T T
0.00 0.01 0.02 0.03 0.04
Stats
I
5] Var, [Q(&,w)]] N
Var {IP’NW] = Vare [Pg] + E¢ [ N, ] FEe | N J|
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CLOSING REMARKS
WORK-IN-PROGRESS

Conclusions

Uncertainty Quantification for MC RT requires a characterization of all sources of variability
In the presence of stochastic media removing the MC RT variability is unattainable

The use of the law-of-total-variance provides a rigorous approach for efficient and accurate statistics evaluation with
under-resolved MC RT computations — variance deconvolution

Future work

Extension to higher-order moments over the stochastic media realizations, i.e. Var,, [T]
Optimal sample allocation strategies can be built (in principle) from pilot computations
Multifidelity sampling approaches can be built from/for this framework!

Recursive use of variance deconvolution can allow for statistics beyond variance, e.g. conditional variances (Sobol’ indices)

Link with other contributions at ANS

Numerical Investigation on the Performance of a Variance Deconvolution Estimator,
Presented by: Kayla Clements — Tomorrow in the Uncertainty Quantification and Machine Learning session

1G. Geraci and A. J. Olson. “Exploration of Multifidelity UQ Methods for Monte Carlo Radiation Applications in Stochastic
Media". In: SIAM Conference on Uncertainty Quantification (SIAM22). 2022.

Deconvolution strategies for parametric variance
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