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UNCERTAINTY QUANTIFICATION FOR RADIATION TRANSPORT
CONTEXT AND CHALLENGES

  

Figures courtesy of Brian Franke and Shawn Pautz

High-fidelity radiation transport modeling and simulation with HPC

Severe simulations budget constraints

Significant UQ parameter dimensionality driven by model complexity
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UNCERTAINTY QUANTIFICATION FOR MONTE CARLO RADIATION TRANSPORT
THE CHALLENGE OF UNDER-RESOLVED COMPUTATIONS

Input uncertainties −→ −→ Compute statistics

How much should your MC RT be resolved?
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STOCHASTIC MEDIA IN RADIATION TRANSPORT
FROM REAL-WORLD APPLICATIONS TO NUMERICS

2

1

3

REAL WORLD 3D COMPUTATIONAL 
MODELS

1D Markovian geometry – Material type 
forms continuous Markov process

1D “Cell” geometry – Cell boundaries 
uniform, but material fill random

1D APPROXIMATIONS

Sim
plify

 

(dimensio
nality

)
Simplify

 (closed-form 
solutions)

Spherical inclusions

Markovian/Poisson

Spherical inclusions

Gaussian process

Real-world examples

Two-phase flow in Boiling Water Reactor nuclear power coolant (1)

Pebble distribution in Pebble-Bed nuclear power reactors (2)

Distribution of TRISO fuel particles in Pebble-Bed pebble (3)

Raleigh-Taylor instabilities in Inertial Confinement Fusion reactors

Accident scenarios in various nuclear power reactor cores
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PLAN AND CONTRIBUTIONS OF THE TALK
FOCUS ON VARIANCE AND STOCHASTIC MEDIA

Contributions of this talk:

How can we obtain accurate parametric variance estimations given a limited computational
budget for particle histories?

How can we extend this to account for limited stochastic media realizations?

Bonus point

Designed a verification test case, i.e. closed form solution for necessary statistics
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Mathematical Framework



MC RT FOR STOCHASTIC MEDIA
ABSTRACT MATHEMATICAL FORMULATION

What are the sources of variability/uncertainty?

Uncertain parameters, e.g. cross sections: ξ

MC RT (internal) randomness: η

Material arrangements/realizations: ω

What is the mathematical counterpart of a MC RT simulation?

Particle histories can be interpreted as elementary events: f = f (ξ, ω, η)

MC RT QoI can be interpreted as an average of f over the histories with fixed UQ parameters and material arrangements

Q(ξ, ω) = Eη [f (ξ, ω, η)]
MC RT
≈

1
Nη

Nη∑
j=1

f
(
ξ, ω, η

(j)
)

def
= Q̃Nη (ξ, ω)
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MC RT FOR STOCHASTIC MEDIA
QUANTITIES OF INTEREST AND UQ PROBLEM

Problem formulation
We focus on statistics over material arrangements

PE(ξ)
def
= Eω [Q(ξ, ω)] ,

while the UQ analysis aims at evaluating the parametric variance, i.e. Varξ [PE(ξ)]

Brute force approach

Varξ [PE(ξ)] ≈ Varξ
[
P̃E

Nω (ξ)
]
,

where

PE(ξ) ≈
1

Nω

Nω∑
k=1

Q̃Nη (ξ, ω
(k)

)
def
= P̃E

Nω (ξ).

Is this correct/efficient?
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UNDERSTANDING THE VARIANCE CONTRIBUTIONS
FROM THE LAW-OF-TOTAL VARIANCE TO DECONVOLUTION

Definitions


P̃E

Nω (ξ)
def
=

1
Nω

Nω∑
k=1

Q̃Nη (ξ, ω(k)),

Q̃Nη (ξ, ω)
def
=

1
Nη

Nη∑
j=1

f
(
ξ, ω, η(j)

)

Let’s start by ’decomposing’ the variance contribution (law-of-total-variance)

Var
[
P̃E

Nω

]
= Varξ

[
Eη,ω

[
P̃E

Nω

]]
+ Eξ

[
Varη,ω

[
P̃E

Nω

]]
The expected value estimators are all unbiased

Eη,ω
[
P̃E

Nω

]
= Eη,ω

 1
Nω

Nω∑
k=1

Q̃Nη (ξ, ω
(k)

)

=
1

Nω

Nω∑
k=1

Eω
[
Eη
[
Q̃Nη (ξ, ω

(k)
)
]]

=
1

Nω

Nω∑
k=1

PE(ξ, ω) = PE(ξ, ω)

Law-of-total-variance can be applied recursively

Varη,ω
[
P̃E

Nω

]
= Varω

[
Eη
[
P̃E

Nω

]]
+ Eω

[
Varη

[
P̃E

Nω

]]
= . . . =

Varω [Q(ξ, ω)]

Nω
+

Eω
[
σ2
η(ξ,ω)

Nη

]
Nω

,

Finally, we get

Var
[
P̃E

Nω

]
= Varξ [PE] + Eξ

[Varω [Q(ξ, ω)]

Nω

]
+ Eξ

Eω
[
σ2
η(ξ,ω)

Nη

]
Nω


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UNDERSTANDING THE VARIANCE CONTRIBUTIONS
CONTRIBUTIONS INTERPRETATION

What are the sources of variability/uncertainty?

Uncertain parameters, e.g. cross sections: ξ

MC RT (internal) randomness: η

Material arrangements/realizations: ω

Var
[
P̃E

Nω

]
︸ ︷︷ ︸

Polluted variance

= Varξ [PE]︸ ︷︷ ︸
Parametric variance

+Eξ
[Varω [Q(ξ, ω)]

Nω

]
︸ ︷︷ ︸

Stochastic media

+Eξ

Eω
[
σ2
η(ξ,ω)

Nη

]
Nη


︸ ︷︷ ︸

MC RT
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VARIANCE DECONVOLUTION
NOTES ON PRACTICAL IMPLEMENTATION

Variance deconvolution recipe:

1 Measure the polluted variance

Var
[
P̃E

Nω

]
→ S̃2

=
1

Nξ − 1

Nξ∑
i=1

P̃E
Nω (ξ

(i)
)−

1
Nξ

Nξ∑
q=1

P̃E
Nω (ξ

(q)
)

2

2 Measure the under-resolved statistics

Eξ
[Varω [Q(ξ, ω)]

Nω

]
+ Eξ

Eω
[
σ2
η(ξ, ω)

]
NωNη


→ ∆S2

=
1

NωNξ

Nξ∑
i=1

 1
Nω

Nω∑
k=1

Q̃Nη (ξ
(i)
, ω

(k)
)−

1
Nω

Nω∑
q=1

Q̃Nη (ξ
(i)
, ω

(q)
)

2
3 Get the parametric variance by difference

Varξ [PE]→ S2
= S̃2 −∆S2
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Numerical Results



RADIATION TRANSPORT
1D TRANSPORT IN STOCHASTIC MEDIA WITH UNCERTAIN PROPERTIES

  

Material Σ0
t,m [cm−1] Σ∆

t,m [cm−1] pm
A 1.0 0.95 0.05
B 0.4 0.25 0.95

TABLE: Uncertain cross sections properties

1D slab, neutral particle, absorption-only mono-energetic steady state radiation transport

Normally incident beam with unitary magnitude

Random cross sections (m = A,B): Σt,m(ξm) = Σ0
t,m + Σ∆

t,mξm, where ξA, ξB ∼ U(−1, 1)

Total number of material sections: Ntot = 10 (with ∆x = 0.15 cm)

The QoI is the transmittance
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RADIATION TRANSPORT
1D TRANSPORT IN STOCHASTIC MEDIA WITH UNCERTAIN PROPERTIES

Transmittance: T(ξ, ω) = exp [−τ(ξ, ω)] , where

Slab optical thickness: τ(ξ, ω) = ∆x
(
NA(ω)Σt,A(ξA) + NB(ω)Σt,B(ξB)

)
Material distribution: NA(ω) ∼ B(Ntot,PA), where NA(ω) + NB(ω) = Ntot

PE(ξ) = Eω [T(ξ, ω)]

= exp
[
−Ntot∆xΣt,B(ξB)

] Ntot∑
x=0

Bω(x) exp
[
−x∆x(Σ∆

t,AξA − Σ
∆
t,BξB)

]

Bω(x) def
=

Ntot!

x! (Ntot − x)!
px

A (1 − pA)
(Ntot−x)

exp
[
−2x∆x(Σ0

t,A − Σ
0
t,B)

]
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1D TRANSPORT IN STOCHASTIC MEDIA WITH UNCERTAIN PROPERTIES
EXACT SOLUTION FOR STATISTICS – PARAMETRIC VARIANCE

Varξ [PE] = Eξ
[
PE(ξ)

2
]
− (Eξ [PE(ξ)])

2

where

Eξ [PE(ξ)] = exp
[
−Ntot∆xΣ

0
t,B

]Ntot∑
x=0

Bω(x)(x)
sinh

[
x∆xΣ∆

t,A

]
x∆xΣ∆

t,A

sinh
[
Ntot∆xΣ∆

t,B

(
1− x

Ntot

)
∆xΣ∆

t,A

]
Ntot∆xΣ∆

t,B

(
1− x

Ntot

)
∆xΣ∆

t,A

 ,

and

Eξ
[
PE(ξ)

2
]

= exp
[
−2Ntot∆xΣ

0
t,B

]Ntot∑
x=0

Bω(x)
2
sinh

[
2x∆xΣ∆

t,A

]
2x∆xΣ∆

t,A

sinh
[
2Ntot∆xΣ∆

t,B

(
1− x

Ntot

)]
2Ntot∆xΣ∆

t,B

(
1− x

Ntot

)
+ 2

Ntot∑
x=0

Ntot∑
y=x+1

Bω(x)Bω(y)
sinh

[
(x + y)∆xΣ∆

t,A

]
(x + y)∆xΣ∆

t,A

sinh
[
2Ntot∆xΣ∆

t,B

(
1− x+y

2Ntot

)]
2Ntot∆xΣ∆

t,B

(
1− x+y

2Ntot

)

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RADIATION TRANSPORT
1D TRANSPORT IN STOCHASTIC MEDIA WITH UNCERTAIN PROPERTIES

Nη Nω C MSE(S2) MSE(S̃2) Diff. [%]

2

2 400 1.7313e-4 3.6084e-3 95.20
4 800 4.0763e-5 9.1886e-4 95.56
8 1600 1.3829e-5 2.3302e-4 94.06
16 3200 6.3738e-6 6.0617e-5 89.48
32 6400 3.6007e-6 1.7405e-5 79.31

4

2 800 5.1799e-5 9.4397e-4 94.51
4 1600 1.4986e-5 2.4136e-4 93.79
8 3200 6.6362e-6 6.3906e-5 89.61
16 6400 3.7136e-6 1.7990e-5 79.35
32 12800 2.5651e-6 5.9639e-6 56.99

8

2 1600 1.9071e-5 2.5549e-4 92.53
4 3200 7.0521e-6 6.6686e-5 89.42
8 6400 3.8521e-6 1.9329e-5 80.07
16 12800 2.5911e-6 6.2441e-6 58.50
32 25600 2.1348e-6 3.0310e-6 29.57

Nη Nω C MSE(S2) MSE(S̃2) Diff. [%]

16

2 3200 8.2811e-6 7.4708e-5 88.91
4 6400 3.9833e-6 2.0705e-5 80.76
8 12800 2.6616e-6 6.7252e-6 60.42
16 25600 2.1034e-6 3.0990e-6 32.12
32 51200 1.8296e-6 2.0513e-6 10.81

32

2 6400 4.7911e-6 2.5362e-5 81.11
4 12800 2.8784e-6 8.0892e-6 64.42
8 25600 2.0873e-6 3.3810e-6 38.26
16 51200 1.8619e-6 2.1960e-6 15.21
32 102400 1.7596e-6 1.8532e-6 5.05

TABLE: MSE (based on 5, 000 repetitions) for the
parametric variance estimator, with (S2) and without

(S̃2) deconvolution, Nξ = 100 UQ samples and several
choices of random material realizations Nω and particle
histories Nη . The total cost for each estimator is
C = Nξ ×Nω ×Nη .
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RADIATION TRANSPORT
1D TRANSPORT IN STOCHASTIC MEDIA WITH UNCERTAIN PROPERTIES

Nη Nω C MSE(S2) MSE(S̃2) Diff. [%]

2

2 400 1.7313e-4 3.6084e-3 95.20
4 800 4.0763e-5 9.1886e-4 95.56
8 1600 1.3829e-5 2.3302e-4 94.06
16 3200 6.3738e-6 6.0617e-5 89.48
32 6400 3.6007e-6 1.7405e-5 79.31

4

2 800 5.1799e-5 9.4397e-4 94.51
4 1600 1.4986e-5 2.4136e-4 93.79
8 3200 6.6362e-6 6.3906e-5 89.61
16 6400 3.7136e-6 1.7990e-5 79.35
32 12800 2.5651e-6 5.9639e-6 56.99

8

2 1600 1.9071e-5 2.5549e-4 92.53
4 3200 7.0521e-6 6.6686e-5 89.42
8 6400 3.8521e-6 1.9329e-5 80.07
16 12800 2.5911e-6 6.2441e-6 58.50
32 25600 2.1348e-6 3.0310e-6 29.57

Nη Nω C MSE(S2) MSE(S̃2) Diff. [%]

16

2 3200 8.2811e-6 7.4708e-5 88.91
4 6400 3.9833e-6 2.0705e-5 80.76
8 12800 2.6616e-6 6.7252e-6 60.42
16 25600 2.1034e-6 3.0990e-6 32.12
32 51200 1.8296e-6 2.0513e-6 10.81

32

2 6400 4.7911e-6 2.5362e-5 81.11
4 12800 2.8784e-6 8.0892e-6 64.42
8 25600 2.0873e-6 3.3810e-6 38.26
16 51200 1.8619e-6 2.1960e-6 15.21
32 102400 1.7596e-6 1.8532e-6 5.05

TABLE: MSE (based on 5, 000 repetitions) for the
parametric variance estimator, with (S2) and without

(S̃2) deconvolution, Nξ = 100 UQ samples and several
choices of random material realizations Nω and particle
histories Nη . The total cost for each estimator is
C = Nξ ×Nω ×Nη .

For fixed Nξ and Nη , MSE decreases if Nω increases
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Nη Nω C MSE(S2) MSE(S̃2) Diff. [%]

2

2 400 1.7313e-4 3.6084e-3 95.20
4 800 4.0763e-5 9.1886e-4 95.56
8 1600 1.3829e-5 2.3302e-4 94.06
16 3200 6.3738e-6 6.0617e-5 89.48
32 6400 3.6007e-6 1.7405e-5 79.31

4

2 800 5.1799e-5 9.4397e-4 94.51
4 1600 1.4986e-5 2.4136e-4 93.79
8 3200 6.6362e-6 6.3906e-5 89.61
16 6400 3.7136e-6 1.7990e-5 79.35
32 12800 2.5651e-6 5.9639e-6 56.99

8

2 1600 1.9071e-5 2.5549e-4 92.53
4 3200 7.0521e-6 6.6686e-5 89.42
8 6400 3.8521e-6 1.9329e-5 80.07
16 12800 2.5911e-6 6.2441e-6 58.50
32 25600 2.1348e-6 3.0310e-6 29.57

Nη Nω C MSE(S2) MSE(S̃2) Diff. [%]

16

2 3200 8.2811e-6 7.4708e-5 88.91
4 6400 3.9833e-6 2.0705e-5 80.76
8 12800 2.6616e-6 6.7252e-6 60.42
16 25600 2.1034e-6 3.0990e-6 32.12
32 51200 1.8296e-6 2.0513e-6 10.81

32

2 6400 4.7911e-6 2.5362e-5 81.11
4 12800 2.8784e-6 8.0892e-6 64.42
8 25600 2.0873e-6 3.3810e-6 38.26
16 51200 1.8619e-6 2.1960e-6 15.21
32 102400 1.7596e-6 1.8532e-6 5.05

TABLE: MSE (based on 5, 000 repetitions) for the
parametric variance estimator, with (S2) and without

(S̃2) deconvolution, Nξ = 100 UQ samples and several
choices of random material realizations Nω and particle
histories Nη . The total cost for each estimator is
C = Nξ ×Nω ×Nη .

For a given cost C = Nξ × Nη × Nω , MSE increases if Nη increases
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Nη Nω C MSE(S2) MSE(S̃2) Diff. [%]

2

2 400 1.7313e-4 3.6084e-3 95.20
4 800 4.0763e-5 9.1886e-4 95.56
8 1600 1.3829e-5 2.3302e-4 94.06
16 3200 6.3738e-6 6.0617e-5 89.48
32 6400 3.6007e-6 1.7405e-5 79.31

4

2 800 5.1799e-5 9.4397e-4 94.51
4 1600 1.4986e-5 2.4136e-4 93.79
8 3200 6.6362e-6 6.3906e-5 89.61
16 6400 3.7136e-6 1.7990e-5 79.35
32 12800 2.5651e-6 5.9639e-6 56.99

8

2 1600 1.9071e-5 2.5549e-4 92.53
4 3200 7.0521e-6 6.6686e-5 89.42
8 6400 3.8521e-6 1.9329e-5 80.07
16 12800 2.5911e-6 6.2441e-6 58.50
32 25600 2.1348e-6 3.0310e-6 29.57

Nη Nω C MSE(S2) MSE(S̃2) Diff. [%]

16

2 3200 8.2811e-6 7.4708e-5 88.91
4 6400 3.9833e-6 2.0705e-5 80.76
8 12800 2.6616e-6 6.7252e-6 60.42
16 25600 2.1034e-6 3.0990e-6 32.12
32 51200 1.8296e-6 2.0513e-6 10.81

32

2 6400 4.7911e-6 2.5362e-5 81.11
4 12800 2.8784e-6 8.0892e-6 64.42
8 25600 2.0873e-6 3.3810e-6 38.26
16 51200 1.8619e-6 2.1960e-6 15.21
32 102400 1.7596e-6 1.8532e-6 5.05

TABLE: MSE (based on 5, 000 repetitions) for the
parametric variance estimator, with (S2) and without

(S̃2) deconvolution, Nξ = 100 UQ samples and several
choices of random material realizations Nω and particle
histories Nη . The total cost for each estimator is
C = Nξ ×Nω ×Nη .

The difference between S2 and S decreases if C = Nξ × Nω × Nη increases
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Var
[
P̃E

Nω

]
= Varξ [PE] + Eξ

[Varω [Q(ξ, ω)]

Nω

]
+Eξ

Eω
[
σ2
η(ξ,ω)

Nη

]
Nω


︸ ︷︷ ︸

Eξ

[
Var
[

Q̃Nη (ξ,ω)

]]
Nω
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CLOSING REMARKS
WORK-IN-PROGRESS

Conclusions

Uncertainty Quantification for MC RT requires a characterization of all sources of variability

In the presence of stochastic media removing the MC RT variability is unattainable

The use of the law-of-total-variance provides a rigorous approach for efficient and accurate statistics evaluation with
under-resolved MC RT computations → variance deconvolution

Future work

Extension to higher-order moments over the stochastic media realizations, i.e. Varω [T]

Optimal sample allocation strategies can be built (in principle) from pilot computations

Multifidelity sampling approaches can be built from/for this framework1

Recursive use of variance deconvolution can allow for statistics beyond variance, e.g. conditional variances (Sobol’ indices)

Link with other contributions at ANS

Numerical Investigation on the Performance of a Variance Deconvolution Estimator,
Presented by: Kayla Clements – Tomorrow in the Uncertainty Quantification and Machine Learning session

1G. Geraci and A. J. Olson. “Exploration of Multifidelity UQ Methods for Monte Carlo Radiation Applications in Stochastic
Media”. In: SIAM Conference on Uncertainty Quantification (SIAM22). 2022.
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