
Approved for public release

Mixed Precision s-step Conjugate Gradient with
Residual Replacements on (NVIDIA) GPUs

Ichitaro Yamazaki*, Erin Carson ⊤, Brian Kelley*

*Sandia National Laboratories, New Mexico, USA
⊤Charles University, Prague, Czech Republic

36th IEEE International Parallel and Distributed Processing Symposium (IPDPS)
June 2, 2022

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy National Nuclear Security Administration under contract DE-NA0003525.

SAND2022-7865CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

2

• improve the stability of the solver, using higher-precision arithmetic
with two main aims:

1. obtain higher accuracy (converging to lower residual norm)

2. improve performance (converging with a fewer iterations, but without significant increase
in the per-iteration time = faster time-to-solution)
• Careful design and implementation

– using higher precision only at the critical parts of the algorithms
– optimizing the underlying kernels for particular properties

Aims with “Mixed Precision s-step Conjugate Gradient with Residual Replacements on (NVIDIA) GPUs”

3

• CG is a popular iterative method for symmetric positive definite (SPD)
linear system, Ax = b.

• It relies on two types of kernels
– Matrix Vector multiply (SpMV)

• for generating Krylov subspace = span(p, Ap, A2p, …)

• typically combined with precondiner to improve convergence

• used as a black box, provided by users, for supporting a wide range of applications
•

– BLAS-1 operations (focus of the paper)

• for computing search direction, to update solution and residual vectors

• two dot’s (with global all-reduce) and three axpy’s

• CG iteration relies on efficient short-term recurrence, but
underlying BLAS-1 kernels are latency bound with low performance
– could become significant in the iteration time (e.g., at large scale)

Conjugate Gradient (CG)

4

• s-step CG generates a set of s basis vectors at a time
– Potential reduction in communication cost by a factor of s

• reducing latency cost (one synchronization per s steps)

• exposing more parallelism and data reuse (BLAS-3 instead of BLAS-1)

• Require O(1) communication for generating O(s) basis vectors.

• Two challenges for practical use
1. Computational overheads
2. Numerical stability

s-step Conjugate Gradient [Chronopoulos, Gear ’89]

5

• In order to reduce communication, it requires additional computation
– If underlying kernels are optimized for multiple vectors, performance may be improved

Computational overhead (first challenge)

3 GEMVs with “2s+1” columns = 2× flops,
but with one GEMM

One dot-products with “2s+1” vectors = 2s× flops,
but with one SYRK

“s” SpMMs with two vectors = 2× flops,
but two vectors at a time

6

Strong-scaling results on Summit (V100 GPUs)

• 500 CG iteration time with 7-pts Laplace 3D (nx=100)

• When communication (e.g., latency) becomes significant,
s-step CG may reduce iteration time, even with the
computational overhead

2x speedup

7

Potential numerical instability with s-step CG (second challenge)

• Both convergence rate and attainable accuracy can deteriorate

• Potentially very ill-conditioned s-step basis vectors V2s+1
– Condition number 𝜅(V2s+1) can grow exponentially with s

– Orthogonality errors can grow quadratically to the condition number
• The Gram matrix G has the squared condition number

Slower convergence

Lower accuracy

8

• Higher-precision to improve convergence behavior [Carson, Gergelits, ‘21]

– form the Gram matrix G in double the working precision

– orthogonality error depends linearly, instead of quadratically,
to condition number of s-step basis vectors

• Residual replacement to improve solution accuracy [Carson, Demmel ‘14]

– replace computed residual vector with true residual vector at “selected” iterations

– the selection requires the computation of
in the working precision

– s-step CG obtains the same residual norm bound
as standard CG,

–

Mixed-precision s-step CG with residual replacement on GPUs
for improving convergence and accuracy

9

Numerical results with mixed-precision s-step CG with RR
using 3D Laplace (n=1003)

Both mixed-precision and RR are needed to obtain convergence similar to standard CG
• Higher-precision improves the convergence
• RR improves the accuracy

RR

mixed

10

Implementation for performance study on a GPU cluster (Summit)

• MPI (cuda-aware) for data exchange between GPUs

• Kokkos for portable performance on different manycore architectures
– we only show performance on NVIDIA GPUs,

• Mixed-precision dot-products to compute G
– It reads “big” tall-skinny V in working precision, but internally use higher precision to compute “small” G

– It is latency bound, hopefully with a small overhead (of computing and writing G in higher precision)

• double or single precision as our working precision
– double working precision

• typical for scientific and engineering application

• may require software-emulated higher precision (double-double in our experiments on V100 GPUs)

– single working precision
• experiments where higher precision is implemented by hardware,

• practical use of single-precision CG exists, e.g., mixed-precision reliable updates and iterative refinements

11

Performance of mixed-precision dot-products using Kokkos on one NVIDIA V100 GPU

• Dot-products is often latency bound, and virtually no overhead using higher precision,
when implemented by hardware

• For mixed single+double or uniform double, vs uniform single

• Mixed-precision dot-products with Cray-style double-double requires 17× more flops,
while IEEE variant requires 21× more flops

• The overhead tends to become smaller on multiple GPUs.

latency bound

Performance gap (double-double)

12

Iteration time breakdown for single working precision on one NVIDIA V100 GPU
hardware-implemented higher precision

• Uniform precision
– SpMM with two vectors is as fast as SpMV with one vector

– Vector-updates with multiple vectors continue to improve
the performance with a larger s

– Dot-products improves the performance for a small s,
but the computational overhead (2s×) becomes significant for a large s

• Mixed-precision, float + double, dot-product
– Input vectors are read in single precision

– No overhead in performing multiply-add and write back G,
in double precision

– Any reduction in the iteration count has direct impact to time-to-solution,
no overhead even if not reduction in the iteration count

Kernel performance study on one GPU (up to 1.1x),
while larger speedups on multiple GPUs

uniform mixed

13

Time-to-solution with mixed-precision single+double s-step CG on six NVIDIA V100 GPUs
hardware-implemented higher precision

• s-step reduces the time-per-iteration, but can suffer from numerical instability

• mixed-precision improves the stability with virtually no overhead, leading to faster to solution

1.8x

14

Iteration time breakdown with double-precision on an NVIDIA V100 GPU
software-emulated higher precision

• mixed-precision dot-products has significant overhead especially with a large s
– Overhead becomes smaller as latency become more significant on multiple GPUs

uniform
mixed

15

Time-to-solution with mixed double + double-double s-step CG
software-emulated higher precision

• Using diagonal matrix,

– Overhead of dot-products is more significant
– Allows controlling the conditioning of the matrix

• Even with software-emulated higher precision,
there are cases where mixed-precision variant
reduces the time-to-solution
– when s-step CG suffers from instability

with a small step size, s1.2x

16

• residual replacement to improve the attainable accuracy
– With residual replacement, s-step CG obtains the same residual norm bound

as standard CG, [Carson, Demmel ‘14]

– The detection require the computation of
in the working precision

– If the residual needs to be replaced before s-th step, we waste some computation needed to
form G, and also take a step smaller than s

• dot-products is latency or bandwidth limited
improve convergence (a fewer iterations) without significant increase in iteration time

Mixed-precision s-step CG with residual replacement

17

Time-to-solution with mixed s-step CG with RR

• RR adds overhead, but improves the attainable solution accuracy
• More results in paper

1.3x 1.8x

18

• We studied mixed-precision s-step CG with residual replacements on GPUs
– When the higher-precision is supported by hardware, it improves the stability with virtually no overhead,

and hence reduces time-to-solution, or if not, no overhead.
– If the higher-precision requires software-emulation, the overhead becomes significant. It may still help when s-step CG becomes

unstable with a small step size, and the latency becomes significant in the iteration time.

• We are planning on some extensions/variations of the algorithm
– We have only looked at monomial basis. Combining these techniques with more stable basis (e.g., Newton, Chebychev) may further

improve the stability, and practicability, of s-step CG
– We only looked at two-term recurrence variant of s-step CG. There is also three-term recurrence variant, where relative cost of dot-

products is smaller in iteration cost, and hence the mixed-precision may be more attractive.

Thank you!!

Final remarks

19

This research was, in part, supported by the Exascale Computing Project (17-SC-20-SC), a joint project of the U.S. Department of Energy’s Office of
Science and National Nuclear Security Administration, responsible for delivering a capable exascale ecosystem, including software, applications, and
hardware technology, to support the nation’s exascale computing imperative.

We thank the members of xSDK multiprecision project, which is part of the Exascale Computing Project.

Acknowledgements

