

Mixed Precision s -step Conjugate Gradient with Residual Replacements on (NVIDIA) GPUs

Approved for public release

Ichitaro Yamazaki*, Erin Carson^T, Brian Kelley*

*Sandia National Laboratories, New Mexico, USA

^TCharles University, Prague, Czech Republic

36th IEEE International Parallel and Distributed Processing Symposium (IPDPS)
June 2, 2022

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy National Nuclear Security Administration under contract DE-NA0003525.

U.S. DEPARTMENT OF
ENERGY

Office of
Science

Aims with “Mixed Precision s -step Conjugate Gradient with Residual Replacements on (NVIDIA) GPUs”

- improve the stability of the solver, using higher-precision arithmetic with two main aims:
 1. obtain higher accuracy (converging to lower residual norm)
 2. improve performance (converging with a fewer iterations, but without significant increase in the per-iteration time = faster time-to-solution)
 - Careful design and implementation
 - using higher precision only at the critical parts of the algorithms
 - optimizing the underlying kernels for particular properties

Conjugate Gradient (CG)

Require: SPD matrix A , RHS vector \mathbf{b} , and initial approximate solution vector \mathbf{x}_1

```
1:  $\mathbf{r}_1 := \mathbf{b} - A\mathbf{x}_1$ ,  $\delta_1 := \mathbf{r}_1^T \mathbf{r}_1$ ,  $\mathbf{p}_1 := \mathbf{r}_1$ 
2: for  $j = 1, 2, \dots$  do
3:   // SpMV with P2P communication
4:    $\mathbf{w}_j := A\mathbf{p}_j$ 
5:   // dot-product with global-reduce
6:    $\gamma_j := \mathbf{p}_j^T \mathbf{w}_j$ 
7:    $\alpha_j := \delta_j / \gamma_j$ 
8:   // update solution and residual vectors
9:    $\mathbf{x}_{j+1} := \mathbf{x}_j + \alpha_j \mathbf{p}_j$ 
10:   $\mathbf{r}_{j+1} := \mathbf{r}_j - \alpha_j \mathbf{w}_j$ 
11:  // dot-product with global-reduce
12:   $\delta_{j+1} := \mathbf{r}_{j+1}^T \mathbf{r}_{j+1}$ 
13:  if Converged then
14:    break
15:  else
16:    // compute next search direction
17:     $\beta_{j+1} := \delta_{j+1} / \delta_j$ 
18:     $\mathbf{p}_{j+1} := \mathbf{r}_{j+1} + \beta_j \mathbf{p}_j$ 
19:  end if
20: end for
```

- CG is a popular iterative method for symmetric positive definite (SPD) linear system, $Ax = b$.
- It relies on two types of kernels
 - **Matrix Vector multiply (SpMV)**
 - for generating Krylov subspace = $\text{span}(p, Ap, A^2p, \dots)$
 - typically combined with **preconditioner** to improve convergence
 - used as a black box, provided by users, for supporting a wide range of applications
 - **BLAS-1 operations** (focus of the paper)
 - for computing search direction, to update solution and residual vectors
 - **two dot's (with global all-reduce)** and **three axpy's**
- CG iteration relies on efficient short-term recurrence, but underlying **BLAS-1** kernels are **latency bound** with low performance
 - could become significant in the iteration time (e.g., at large scale)

s -step Conjugate Gradient [Chronopoulos, Gear '89]

- s -step CG generates a set of s basis vectors at a time
 - Potential reduction in communication cost by a factor of s
 - reducing latency cost (one synchronization per s steps)
 - exposing more parallelism and data reuse (BLAS-3 instead of BLAS-1)
 - Require $O(1)$ communication for generating $O(s)$ basis vectors.
- Two challenges for practical use
 1. Computational overheads
 2. Numerical stability

```
1: for  $j = 1, 1 \cdot s + 1, 2 \cdot s + 1, \dots$  do
2:   // Matrix Powers Kernel to generate Krylov space
3:   for  $k = 1, 2, \dots, s$  do
4:      $[\mathbf{r}_{j+k}, \mathbf{p}_{j+k+1}] := A [\mathbf{r}_{j+k-1}, \mathbf{p}_{j+k}]$ 
5:   end for
6:   // Compute new solution and residual vector
7:    $G := V^T V$  with  $V = [P_{j:j+s}, R_{j:j+s-1}]$ 
8:   ...
9:    $[\mathbf{r}_{j+s}, \mathbf{x}_{j+1}, \mathbf{p}_{j+2}] := V[\mathbf{y}, \mathbf{t}, \mathbf{c}]$ 
10: end for
```

Computational overhead (first challenge)

- In order to reduce communication, it requires additional computation
 - If underlying kernels are optimized for multiple vectors, performance may be improved

Require: SPD matrix A , RHS vector \mathbf{b} , and initial approximate solution vector \mathbf{x}_1

```

1:  $\mathbf{r}_1 := \mathbf{b} - A\mathbf{x}_1$ ,  $\delta_1 := \mathbf{r}_1^T \mathbf{r}_1$ ,  $\mathbf{p}_1 := \mathbf{r}_1$ 
2: for  $j = 1, 2, \dots$  do
3:   // SpMV with P2P communication
4:    $\mathbf{w}_j := A\mathbf{p}_j$ 
5:   // dot-product with global-reduce
6:    $\gamma_j := \mathbf{p}_j^T \mathbf{w}_j$ 
7:    $\alpha_j := \delta_j / \gamma_j$ 
8:   // update solution and residual vectors
9:    $\mathbf{x}_{j+1} := \mathbf{x}_j + \alpha_j \mathbf{p}_j$ 
10:   $\mathbf{r}_{j+1} := \mathbf{r}_j - \alpha_j \mathbf{w}_j$ 
11:  // dot-product with global-reduce
12:   $\delta_{j+1} := \mathbf{r}_{j+1}^T \mathbf{r}_{j+1}$ 
13:  if Converged then
14:    break
15:  else
16:    // compute next search direction
17:     $\beta_{j+1} := \delta_{j+1} / \delta_j$ 
18:     $\mathbf{p}_{j+1} := \mathbf{r}_{j+1} + \beta_j \mathbf{p}_j$ 
19:  end if
20: end for

```

```

1: for  $j = 1, 1 \cdot s + 1, 2 \cdot s + 1, \dots$  do
2:   // Matrix Powers Kernel to generate Krylov space
3:   for  $k = 1, 2, \dots, s$  do
4:      $[\mathbf{r}_{j+k}, \mathbf{p}_{j+k+1}] := A [\mathbf{r}_{j+k-1}, \mathbf{p}_{j+k}]$ 
5:   end for
6:   // Compute new solution and residual vector
7:    $G := V^T V$  with  $V = [P_{j:j+s}, R_{j:j+s-1}]$ 
8:   ...
9:    $[\mathbf{r}_{j+s}, \mathbf{x}_{j+1}, \mathbf{p}_{j+2}] := V[\mathbf{y}, \mathbf{t}, \mathbf{c}]$ 
10:  end for

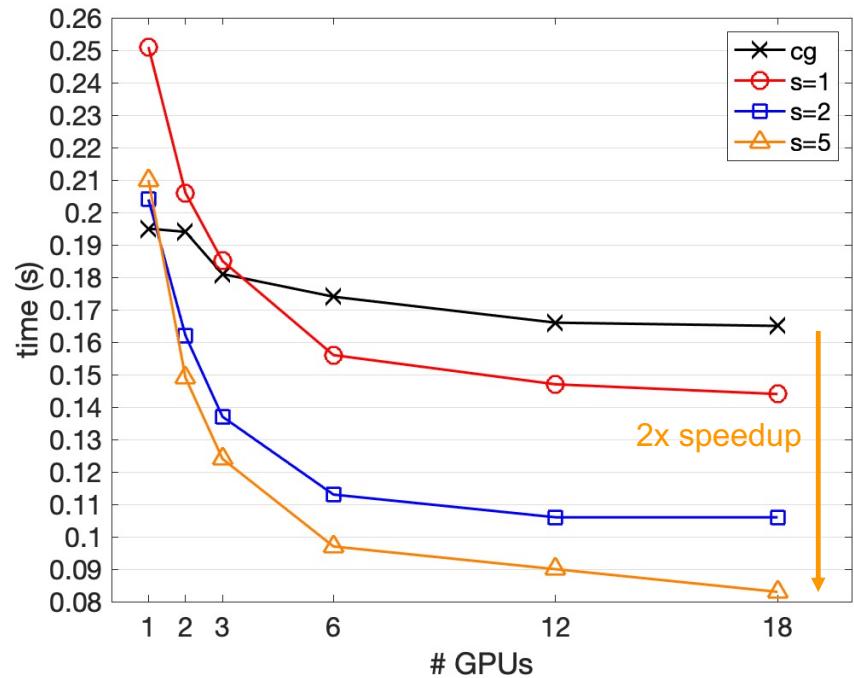
```

“ s ” **SpMMs** with two vectors = $2 \times \text{flops}$,
but two vectors at a time

One dot-products with “ $2s+1$ ” vectors = $2s \times \text{flops}$,
but with one **SYRK**

3 **GEMVs** with “ $2s+1$ ” columns = $2 \times \text{flops}$,
but with one **GEMM**

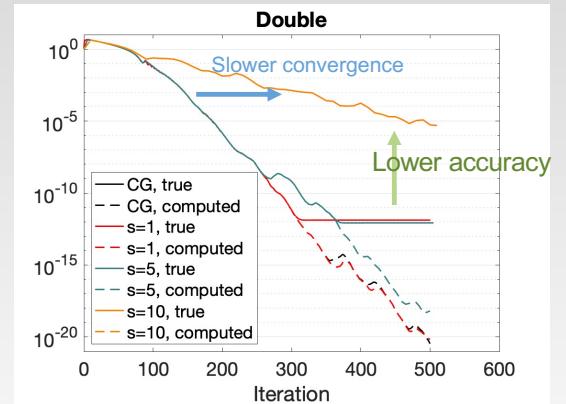
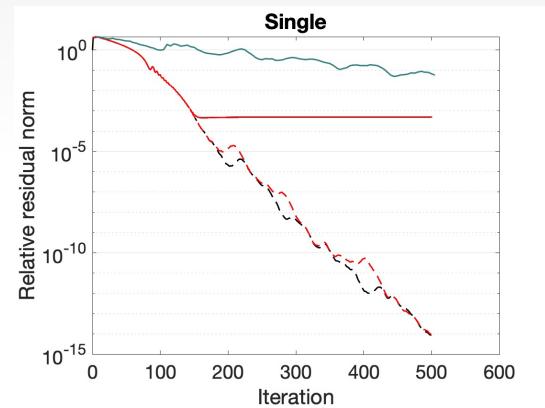
Strong-scaling results on Summit (V100 GPUs)



- 500 CG iteration time with 7-pts Laplace 3D ($n_x=100$)
- When communication (e.g., **latency**) becomes significant, s -step CG may reduce iteration time, even with the computational overhead

Potential numerical instability with s -step CG (second challenge)

- Both convergence rate and attainable accuracy can deteriorate
- Potentially very ill-conditioned s -step basis vectors V_{2s+1}
 - Condition number $\kappa(V_{2s+1})$ can grow exponentially with s
 - Orthogonality errors can grow quadratically to the condition number
 - The Gram matrix G has the squared condition number



Mixed-precision s -step CG with residual replacement on GPUs for improving convergence and accuracy

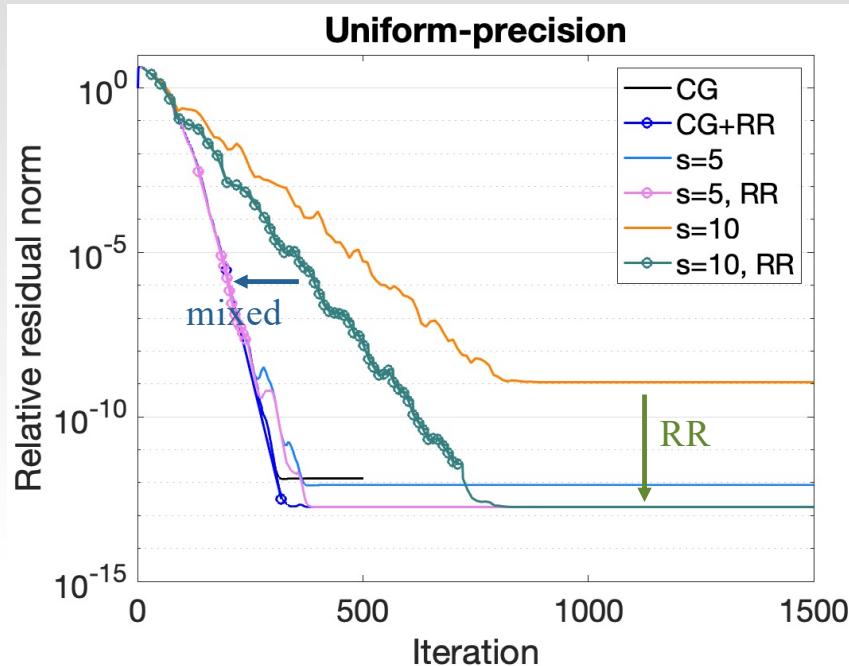
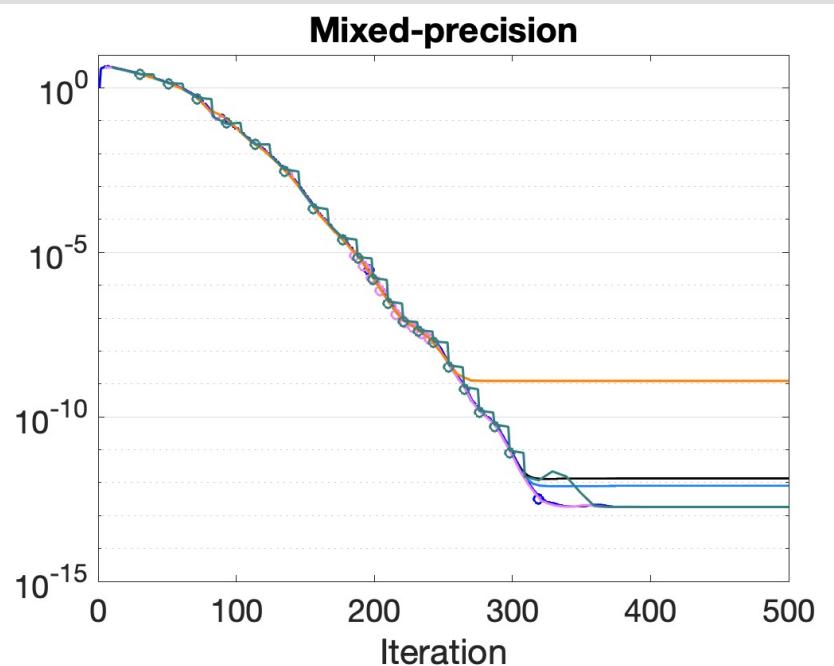
- Higher-precision to improve convergence behavior [Carson, Gergelits, '21]
 - form the Gram matrix G in **double the working precision**
 - orthogonality error depends linearly, instead of quadratically, to condition number of s -step basis vectors
- Residual replacement to improve solution accuracy [Carson, Demmel '14]
 - replace computed residual vector with true residual vector at “selected” iterations
 - the selection requires the computation of $\bar{G} = |V_{(j-1)/s}|^T |V_{(j-1)/s}|$, in the working precision
 - s -step CG obtains the same residual norm bound as standard CG, $O(\epsilon) \|A\| \|x\|$,

```

1:  $\mathbf{r}_1 := \mathbf{b} - A\mathbf{x}_1$ ,  $\hat{\delta}_1 := \mathbf{r}_1^T \mathbf{r}_1$ ,  $\mathbf{p}_1 := \mathbf{r}_1$ 
2:  $\mathbf{z} = \mathbf{0}$ 
3: for  $j+ = \hat{s}$  do
4:   // MPK (on GPUs) with P2P communication
5:    $P_j := \mathbf{p}_j$ ,  $R_j := \mathbf{r}_j$ 
6:    $P_{j+1} := AP_j$ 
7:   for  $k = 1, 2, \dots, s-1$  do
8:      $[R_{j+k}, P_{j+k+1}] := A[R_{j+k-1}, P_{j+k}]$ 
9:   end for
10:  // dot-products (on GPUs) with global-reduce
11:   $G := V_\ell^T V_\ell$ ,
12:  where  $V_\ell := [P_{j:j+s}, R_{j:j+s-1}]$  and  $\ell := (j-1)/s$ 
13:  if Converged then
14:    break
15:  end if
16:  // update coefficients (redundantly on each host)
17:   $\mathbf{c}_1 := \mathbf{e}_1$ ,  $\mathbf{t}_1 := \mathbf{e}_{s+1}$ ,  $\delta_1 := \mathbf{t}_k^T G \mathbf{t}_k$ 
18:  for  $k = 1, 2, \dots, s$  do
19:     $\mathbf{d}_k := B\mathbf{c}_k$ ,  $\gamma_k := \mathbf{c}_k^T G \mathbf{d}_k$ ,  $\alpha_k := \delta_k / \gamma_k$ 
20:     $\mathbf{y}_{k+1} := \mathbf{y}_k + \alpha_k \mathbf{c}_k$ 
21:     $\mathbf{t}_{k+1} := \mathbf{t}_k - \alpha_k \mathbf{d}_k$ 
22:     $\delta_{k+1} := \mathbf{t}_{k+1}^T G \mathbf{t}_{k+1}$ ,  $\beta_k := \delta_{k+1} / \delta_k$ 
23:     $\mathbf{c}_{k+1} := \mathbf{t}_{k+1} + \beta_k \mathbf{c}_k$ 
24:    if time to replace residual vector then
25:       $\mathbf{x}_{j+k} := \mathbf{x}_j + [P_{j:j+s} R_{j:j+s-1}] \mathbf{y}_{k+1}$ 
26:       $\mathbf{P}_{j+k} := [P_{j:j+s} R_{j:j+s-1}] \mathbf{c}_{k+1}$ 
27:       $\mathbf{z} = \mathbf{z} + \mathbf{x}_{j+k}$ 
28:       $\mathbf{r}_{j+k} := \mathbf{b} - A\mathbf{z}_{j+k}$ 
29:       $\mathbf{x}_{j+k} := \mathbf{0}$ 
30:       $\hat{s} := k$ 
31:      break
32:    end if
33:  end for
34:  if not replaced then
35:    // update vectors (on GPUs)
36:     $\mathbf{x}_{j+s} := \mathbf{x}_j + [P_{j:j+s} R_{j:j+s-1}] \mathbf{y}_{s+1}$ 
37:     $\mathbf{r}_{j+s} := [P_{j:j+s} R_{j:j+s-1}] \mathbf{t}_{s+1}$ 
38:     $\mathbf{P}_{j+s} := [P_{j:j+s} R_{j:j+s-1}] \mathbf{c}_{s+1}$ 
39:     $\hat{s} := s$ 
40:  end if
41: end for
42:  $\mathbf{x} := \mathbf{x}_{\text{end}} + \mathbf{z}$ 

```

Numerical results with mixed-precision s -step CG with RR
using 3D Laplace ($n=100^3$)



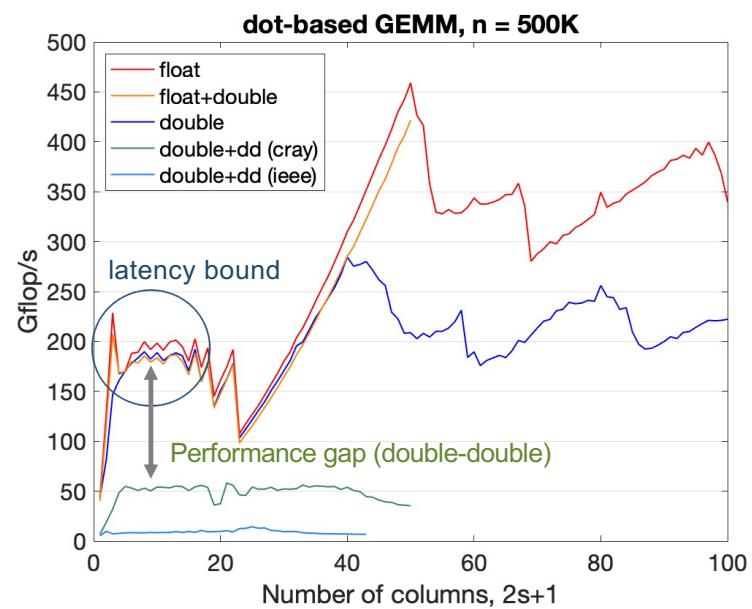
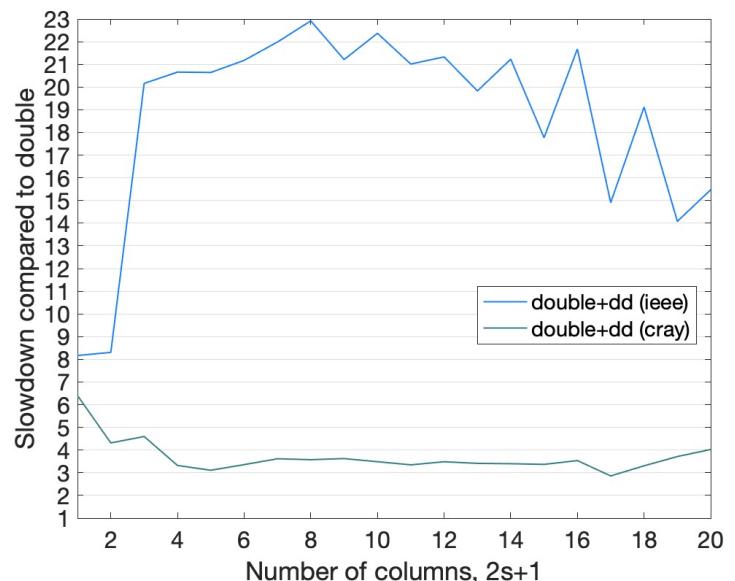
Both mixed-precision and RR are needed to obtain convergence similar to standard CG

- Higher-precision improves the convergence
- RR improves the accuracy

Implementation for performance study on a GPU cluster (Summit)

- MPI (cuda-aware) for data exchange between GPUs
- Kokkos for portable performance on different manycore architectures
 - we only show performance on NVIDIA GPUs,
- Mixed-precision dot-products to compute G
 - It reads “big” tall-skinny V in working precision, but internally use higher precision to compute “small” G
 - It is latency bound, hopefully with a small overhead (of computing and writing G in higher precision)
- **double** or **single** precision as our working precision
 - **double working precision**
 - typical for scientific and engineering application
 - may require software-emulated higher precision (double-double in our experiments on V100 GPUs)
 - **single working precision**
 - experiments where higher precision is implemented by hardware,
 - practical use of single-precision CG exists, e.g., mixed-precision reliable updates and iterative refinements

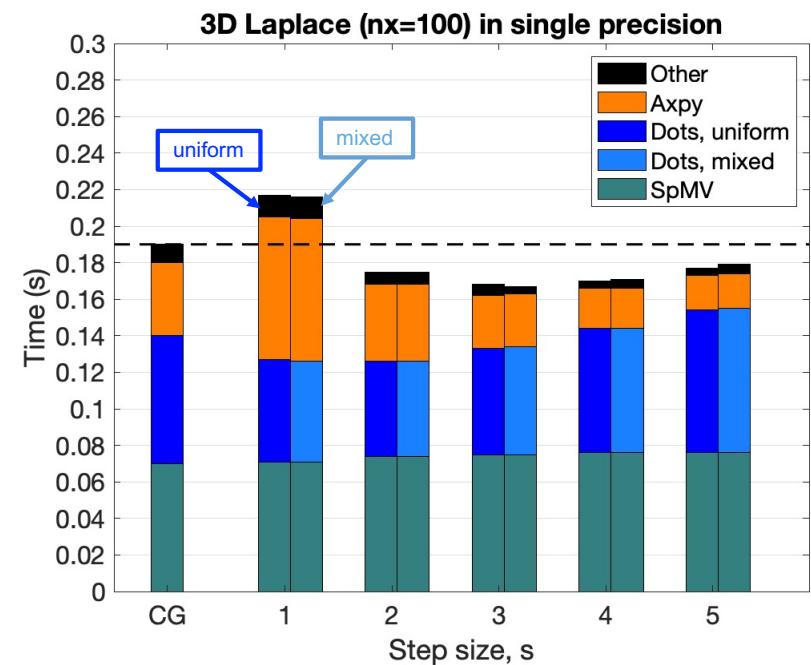
Performance of mixed-precision dot-products using Kokkos on one NVIDIA V100 GPU



- Dot-products is often latency bound, and virtually no overhead using higher precision, when implemented by hardware
 - For mixed single+double or uniform double, vs uniform single
- Mixed-precision dot-products with Cray-style double-double requires $17\times$ more flops, while IEEE variant requires $21\times$ more flops
- The overhead tends to become smaller on multiple GPUs.

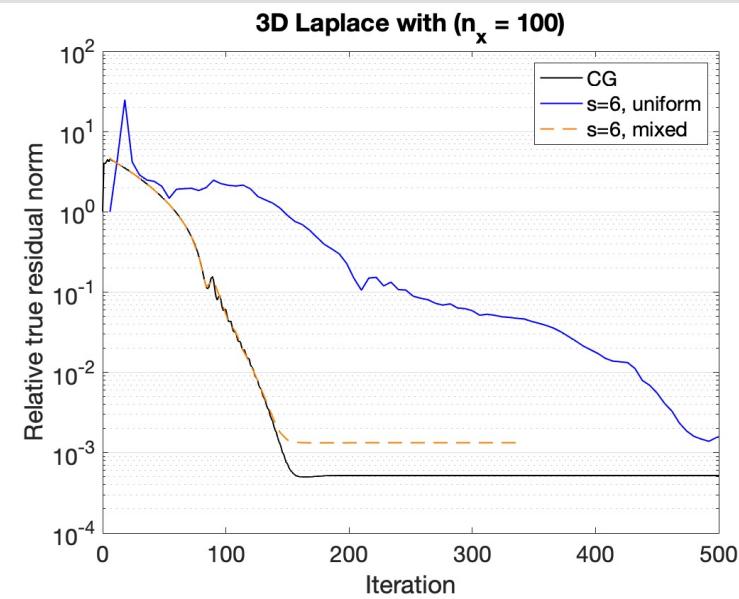
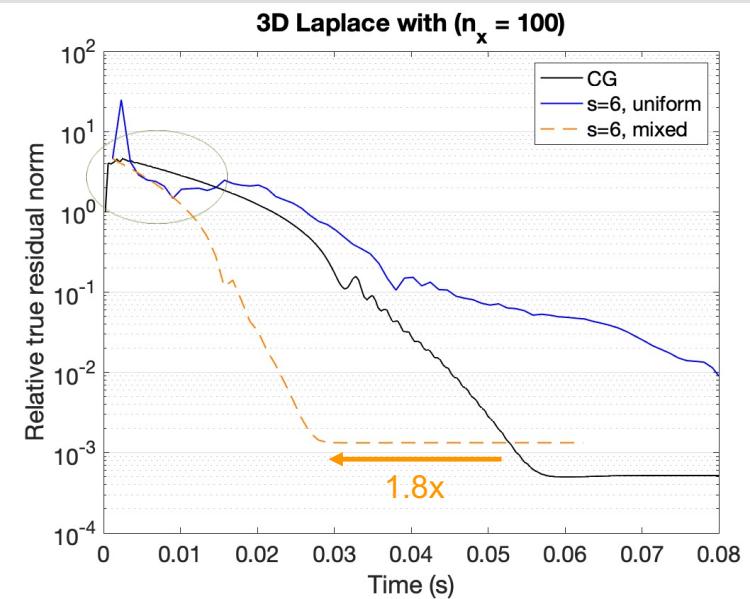
Iteration time breakdown for single working precision on one NVIDIA V100 GPU hardware-implemented higher precision

- Uniform precision
 - SpMM with two vectors is as fast as SpMV with one vector
 - Vector-updates with multiple vectors continue to improve the performance with a larger s
 - Dot-products improves the performance for a small s , but the computational overhead ($2s \times$) becomes significant for a large s
- Mixed-precision, float + double, dot-product
 - Input vectors are read in single precision
 - No overhead in performing multiply-add and write back G , in double precision
 - Any reduction in the iteration count has direct impact to time-to-solution, no overhead even if not reduction in the iteration count



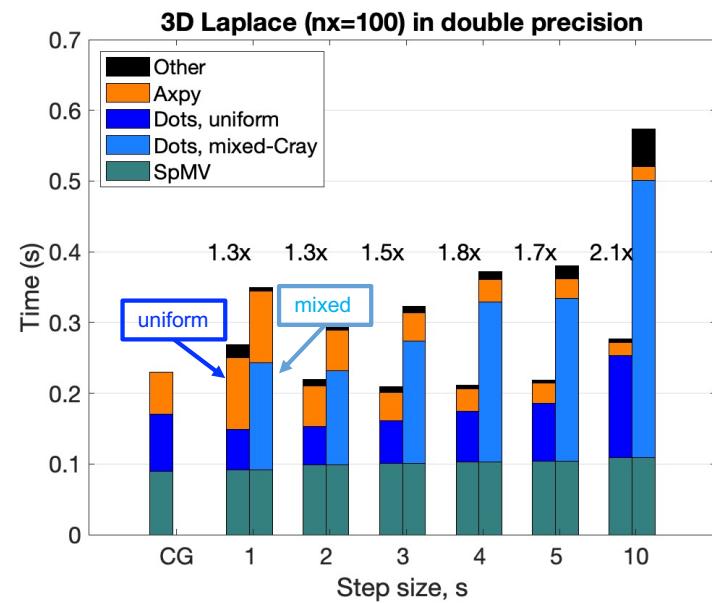
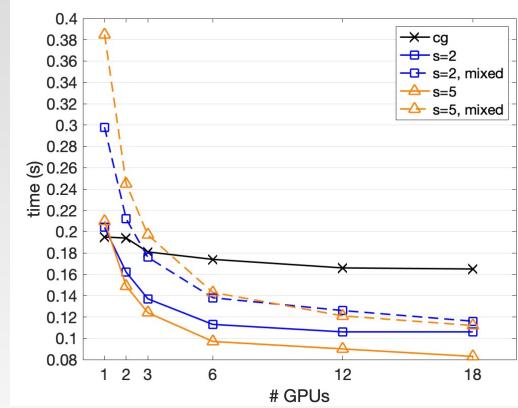
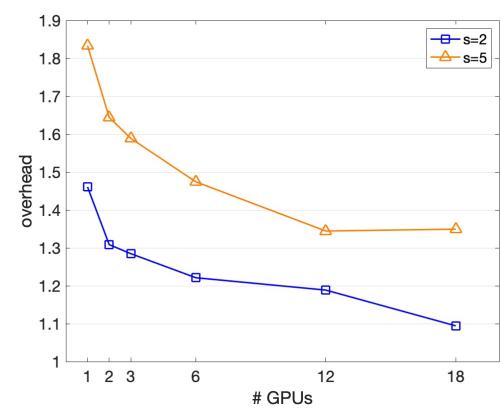
Kernel performance study on one GPU (up to 1.1x),
while larger speedups on multiple GPUs

Time-to-solution with mixed-precision single+double s -step CG on **six** NVIDIA V100 GPUs
hardware-implemented higher precision



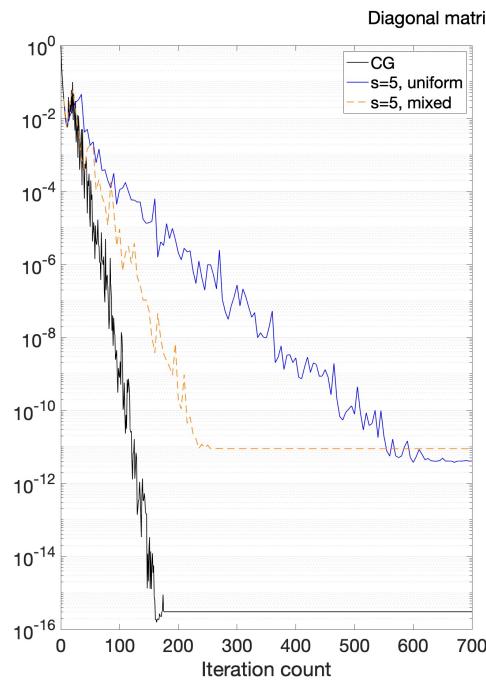
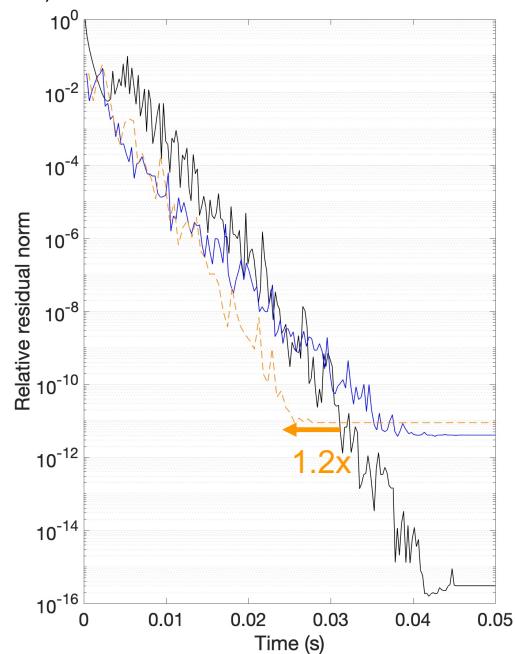
- s -step reduces the time-per-iteration, but can suffer from numerical instability
- mixed-precision improves the stability with virtually no overhead, leading to faster to solution

Iteration time breakdown with double-precision on an NVIDIA V100 GPU software-emulated higher precision



- mixed-precision dot-products has significant overhead especially with a large s
 - Overhead becomes smaller as latency become more significant on multiple GPUs

Time-to-solution with mixed double + double-double s -step CG software-emulated higher precision



- Using diagonal matrix,

$$a_{i,i} = \lambda_1 + (i-1)/(n-1)(\lambda_n - \lambda_1)\rho^{n-i}.$$
 - Overhead of dot-products is more significant
 - Allows controlling the conditioning of the matrix
- Even with software-emulated higher precision, there are cases where mixed-precision variant reduces the time-to-solution
 - when s -step CG suffers from instability with a small step size, s

Mixed-precision s -step CG with residual replacement

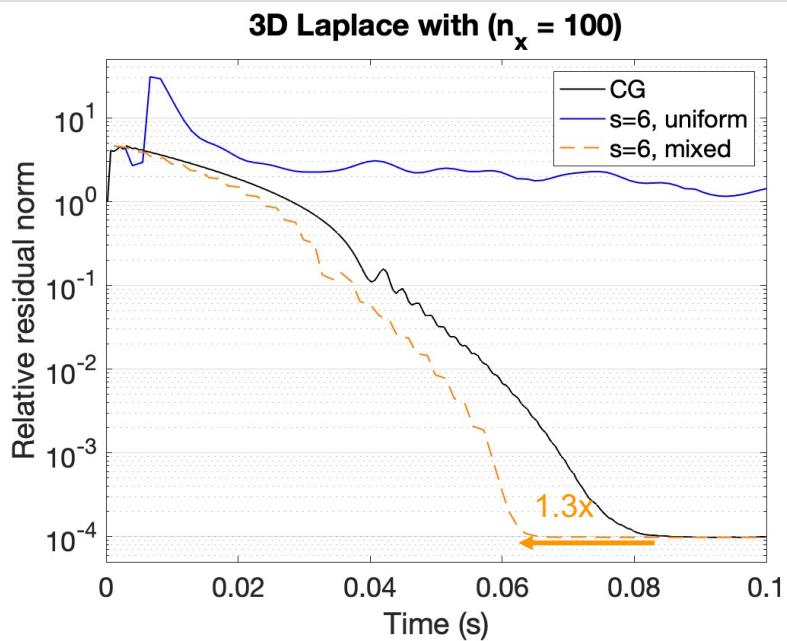
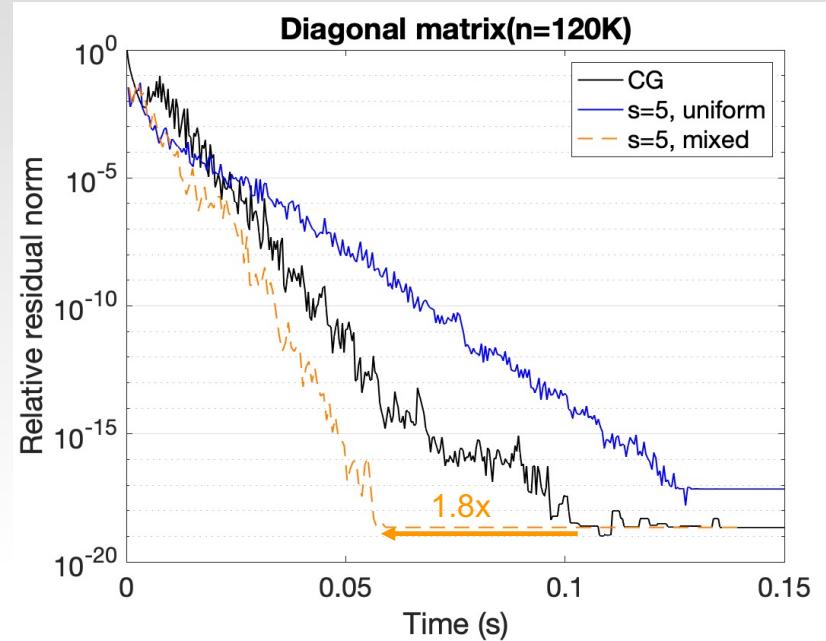
```

1:  $\mathbf{r}_1 := \mathbf{b} - A\mathbf{x}_1$ ,  $\delta_1 := \mathbf{r}_1^T \mathbf{r}_1$ ,  $\mathbf{p}_1 := \mathbf{r}_1$ 
2:  $\mathbf{z} = \mathbf{0}$ 
3: for  $j + = \hat{s}$  do
4:   // MPK (on GPUs) with P2P communication
5:    $P_j := \mathbf{p}_j$ ,  $R_j := \mathbf{r}_j$ 
6:    $P_{j+1} := AP_j$ 
7:   for  $k = 1, 2, \dots, s - 1$  do
8:      $[R_{j+k}, P_{j+k+1}] := A[R_{j+k-1}, P_{j+k}]$ 
9:   end for
10:  // dot-products (on GPUs) with global-reduce
11:   $\mathbf{G} := V_\ell^T V_\ell$ ,
12:  where  $V_\ell := [P_{j:j+s}, R_{j:j+s-1}]$  and  $\ell := (j-1)/s$ 
13:  if Converged then
14:    break
15:  end if
16:  // update coefficients (redundantly on each host)
17:   $\mathbf{c}_1 := \mathbf{e}_1$ ,  $\mathbf{t}_1 := \mathbf{e}_{s+1}$ ,  $\delta_k := \mathbf{t}_k^T \mathbf{G} \mathbf{t}_k$ 
18:  for  $k = 1, 2, \dots, s$  do
19:     $\mathbf{d}_k := B\mathbf{c}_k$ ,  $\gamma_k := \mathbf{c}_k^T \mathbf{G} \mathbf{d}_k$ ,  $\alpha_k := \delta_k / \gamma_k$ 
20:     $\mathbf{y}_{k+1} := \mathbf{y}_k + \alpha_k \mathbf{c}_k$ 
21:     $\mathbf{t}_{k+1} := \mathbf{t}_k - \alpha_k \mathbf{d}_k$ 
22:     $\delta_{k+1} := \mathbf{t}_{k+1}^T \mathbf{G} \mathbf{t}_{k+1}$ ,  $\beta_k := \delta_{k+1} / \delta_k$ 
23:     $\mathbf{c}_{k+1} := \mathbf{t}_{k+1} + \beta_k \mathbf{c}_k$ 
24:    if time to replace residual vector then
25:       $\mathbf{x}_{j+k} := \mathbf{x}_j + [P_{j:j+s} R_{j:j+s-1}] \mathbf{y}_{k+1}$ 
26:       $\mathbf{p}_{j+k} := [\bar{P}_{j:j+s} \bar{R}_{j:j+s-1}] \mathbf{c}_{k+1}$ 
27:       $\mathbf{z} = \mathbf{z} + \mathbf{x}_{j+k}$ 
28:       $\mathbf{r}_{j+k} := \mathbf{b} - A\mathbf{z}_{j+k}$ 
29:       $\mathbf{x}_{j+k} := \mathbf{0}$ 
30:       $\hat{s} := k$ 
31:      break
32:    end if
33:  end for
34:  if not replaced then
35:    // update vectors (on GPUs)
36:     $\mathbf{x}_{j+s} := \mathbf{x}_j + [P_{j:j+s} R_{j:j+s-1}] \mathbf{y}_{s+1}$ 
37:     $\mathbf{r}_{j+s} := [\bar{P}_{j:j+s} \bar{R}_{j:j+s-1}] \mathbf{t}_{s+1}$ 
38:     $\mathbf{p}_{j+s} := [\bar{P}_{j:j+s} \bar{R}_{j:j+s-1}] \mathbf{c}_{s+1}$ 
39:     $\hat{s} := s$ 
40:  end if
41: end for
42:  $\mathbf{x} := \mathbf{x}_{\text{end}} + \mathbf{z}$ 

```

- **residual replacement** to improve the attainable accuracy
 - With residual replacement, s -step CG obtains the same residual norm bound as standard CG, $O(\epsilon) \|A\| \|x\|$. [Carson, Demmel '14]
 - The detection require the computation of $\bar{G} = |V_{(j-1)/s}|^T |V_{(j-1)/s}|$, in the working precision
 - If the residual needs to be replaced before s -th step, we waste some computation needed to form \mathbf{G} , and also take a step smaller than s
- dot-products is latency or bandwidth limited
improve convergence (a fewer iterations) without significant increase in iteration time

Time-to-solution with mixed s -step CG with RR



- RR adds overhead, but improves the attainable solution accuracy
- More results in paper

Final remarks

- We studied mixed-precision s -step CG with residual replacements on GPUs
 - When the [higher-precision is supported by hardware](#), it improves the stability with [virtually no overhead](#), and hence reduces time-to-solution, or if not, no overhead.
 - If the [higher-precision requires software-emulation](#), the overhead becomes significant. It may still help when s -step CG becomes unstable with [a small step size](#), and the [latency](#) becomes significant in the iteration time.
- We are planning on some extensions/variations of the algorithm
 - We have only looked at monomial basis. Combining these techniques with more stable basis (e.g., Newton, Chebychev) may further improve the stability, and practicability, of s -step CG
 - We only looked at two-term recurrence variant of s -step CG. There is also three-term recurrence variant, where relative cost of dot-products is smaller in iteration cost, and hence the mixed-precision may be more attractive.

Thank you!!

Acknowledgements

This research was, in part, supported by the Exascale Computing Project (17-SC-20-SC), a joint project of the U.S. Department of Energy's Office of Science and National Nuclear Security Administration, responsible for delivering a capable exascale ecosystem, including software, applications, and hardware technology, to support the nation's exascale computing imperative.

We thank the members of [xSDK multiprecision project](#), which is part of the Exascale Computing Project.