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• improve the stability of the solver, using higher-precision arithmetic
with two main aims:

1. obtain higher accuracy (converging to lower residual norm)

2. improve performance (converging with a fewer iterations, but without significant increase
in the per-iteration time = faster time-to-solution)
• Careful design and implementation

– using higher precision only at the critical parts of the algorithms
– optimizing the underlying kernels for particular properties

Aims with “Mixed Precision s-step Conjugate Gradient with Residual Replacements on (NVIDIA) GPUs”
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• CG is a popular iterative method for symmetric positive definite (SPD) 
linear system, Ax = b.

• It relies on two types of kernels
– Matrix Vector multiply (SpMV)

• for generating Krylov subspace = span(p, Ap, A2p, …)

• typically combined with precondiner to improve convergence

• used as a black box, provided by users, for supporting a wide range of applications
•

– BLAS-1 operations (focus of the paper)

• for computing search direction, to update solution and residual vectors

• two dot’s (with global all-reduce) and three axpy’s

• CG iteration relies on efficient short-term recurrence, but
underlying BLAS-1 kernels are latency bound with low performance
– could become significant in the iteration time (e.g., at large scale)

Conjugate Gradient (CG)
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• s-step CG generates a set of s basis vectors at a time
– Potential reduction in communication cost by a factor of s

• reducing latency cost (one synchronization per s steps)

• exposing more parallelism and data reuse (BLAS-3 instead of BLAS-1)

• Require O(1) communication for generating O(s) basis vectors.

• Two challenges for practical use
1. Computational overheads
2. Numerical stability

s-step Conjugate Gradient [Chronopoulos, Gear ’89]
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• In order to reduce communication, it requires additional computation
– If underlying kernels are optimized for multiple vectors, performance may be improved

Computational overhead (first challenge)

3 GEMVs with “2s+1” columns = 2× flops, 
but with one GEMM

One dot-products with “2s+1” vectors = 2s× flops, 
but with one SYRK

“s” SpMMs with two vectors = 2× flops, 
but two vectors at a time
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Strong-scaling results on Summit (V100 GPUs)

• 500 CG iteration time with 7-pts Laplace 3D (nx=100)

• When communication (e.g., latency) becomes significant, 
s-step CG may reduce iteration time, even with the 
computational overhead

2x speedup
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Potential numerical instability with s-step CG (second challenge)

• Both convergence rate and attainable accuracy can deteriorate 

• Potentially very ill-conditioned s-step basis vectors V2s+1
– Condition number 𝜅(V2s+1) can grow exponentially with s

– Orthogonality errors can grow quadratically to the condition number
• The Gram matrix G has the squared condition number

Slower convergence

Lower accuracy
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• Higher-precision to improve convergence behavior [Carson, Gergelits, ‘21]

– form the Gram matrix G in double the working precision

– orthogonality error depends linearly, instead of quadratically, 
to condition number of s-step basis vectors

• Residual replacement to improve solution accuracy [Carson, Demmel ‘14]

– replace computed residual vector with true residual vector at “selected” iterations

– the selection requires the computation of
in the working precision

– s-step CG obtains the same residual norm bound 
as standard CG,                   

–

Mixed-precision s-step CG with residual replacement on GPUs
for improving convergence and accuracy
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Numerical results with mixed-precision s-step CG with RR
using 3D Laplace (n=1003)

Both mixed-precision and RR are needed to obtain convergence similar to standard CG
• Higher-precision improves the convergence
• RR improves the accuracy

RR

mixed
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Implementation for performance study on a GPU cluster (Summit)

• MPI (cuda-aware) for data exchange between GPUs

• Kokkos for portable performance on different manycore architectures
– we only show performance on NVIDIA GPUs,

• Mixed-precision dot-products to compute G
– It reads “big” tall-skinny V in working precision, but internally use higher precision to compute “small” G

– It is latency bound, hopefully with a small overhead (of computing and writing G in higher precision)

• double or single precision as our working precision
– double working precision

• typical for scientific and engineering application

• may require software-emulated higher precision (double-double in our experiments on V100 GPUs)

– single working precision
• experiments where higher precision is implemented by hardware, 

• practical use of single-precision CG exists, e.g., mixed-precision reliable updates and iterative refinements
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Performance of mixed-precision dot-products using Kokkos on one NVIDIA V100 GPU

• Dot-products is often latency bound, and virtually no overhead using higher precision, 
when implemented by hardware

• For mixed single+double or uniform double, vs uniform single

• Mixed-precision dot-products with Cray-style double-double requires 17× more flops,
while IEEE variant requires 21× more flops

• The overhead tends to become smaller on multiple GPUs.

latency bound

Performance gap (double-double)



12

Iteration time breakdown for single working precision on one NVIDIA V100 GPU
hardware-implemented higher precision

• Uniform precision
– SpMM with two vectors is as fast as SpMV with one vector

– Vector-updates with multiple vectors continue to improve 
the performance with a larger s

– Dot-products improves the performance for a small s,
but the computational overhead (2s×) becomes significant for a large s

• Mixed-precision, float + double, dot-product
– Input vectors are read in single precision

– No overhead in performing multiply-add and write back G,
in double precision

– Any reduction in the iteration count has direct impact to time-to-solution,
no overhead even if not reduction in the iteration count

Kernel performance study on one GPU (up to 1.1x),
while larger speedups on multiple GPUs

uniform mixed
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Time-to-solution with mixed-precision single+double s-step CG on six NVIDIA V100 GPUs
hardware-implemented higher precision

• s-step reduces the time-per-iteration, but can suffer from numerical instability

• mixed-precision improves the stability with virtually no overhead, leading to faster to solution 

1.8x
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Iteration time breakdown with double-precision on an NVIDIA V100 GPU
software-emulated higher precision

• mixed-precision dot-products has significant overhead especially with a large s
– Overhead becomes smaller as latency become more significant on multiple GPUs

uniform
mixed
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Time-to-solution with mixed double + double-double s-step CG
software-emulated higher precision

• Using diagonal matrix,

– Overhead of dot-products is more significant
– Allows controlling the conditioning of the matrix

• Even with software-emulated higher precision,
there are cases where mixed-precision variant
reduces the time-to-solution
– when s-step CG suffers from instability

with a small step size, s1.2x
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• residual replacement to improve the attainable accuracy
– With residual replacement, s-step CG obtains the same residual norm bound 

as standard CG,                      [Carson, Demmel ‘14]

– The detection require the computation of
in the working precision

– If the residual needs to be replaced before s-th step, we waste some computation needed to 
form G, and also take a step smaller than s

• dot-products is latency or bandwidth limited 
improve convergence (a fewer iterations) without significant increase in iteration time

Mixed-precision s-step CG with residual replacement
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Time-to-solution with mixed s-step CG with RR

• RR adds overhead, but improves the attainable solution accuracy
• More results in paper

1.3x 1.8x
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• We studied mixed-precision s-step CG with residual replacements on GPUs
– When the higher-precision is supported by hardware, it improves the stability with virtually no overhead,

and hence reduces time-to-solution, or if not, no overhead.
– If the higher-precision requires software-emulation, the overhead becomes significant. It may still help when s-step CG becomes 

unstable with a small step size, and the latency becomes significant in the iteration time.

• We are planning on some extensions/variations of the algorithm
– We have only looked at monomial basis. Combining these techniques with more stable basis (e.g., Newton, Chebychev) may further 

improve the stability, and practicability, of s-step CG
– We only looked at two-term recurrence variant of s-step CG. There is also three-term recurrence variant, where relative cost of dot-

products is smaller in iteration cost, and hence the mixed-precision may be more attractive.

Thank you!!

Final remarks
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