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Aims with “Mixed Precision s-step Conjugate Gradient with Residual Replacements on (NVIDIA) GPUSs”

e improve the stability of the solver, using higher-precision arithmetic
with two main aims:

1. obtain higher accuracy (converging to lower residual norm)

2. improve performance (converging with a fewer iterations, but without significant increase
in the per-iteration time = faster time-to-solution)
*  Careful design and implementation

—  using higher precision only at the critical parts of the algorithms

—  optimizing the underlying kernels for particular properties
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Conjugate Gradient (CG)

Require: SPD matrix A, RHS vector b, and initial approximate
solution vector x;
1: r1 :=b — Axq, 61 := rF{rl, p1L:=r1
2: for j=1,2,... do
3: // SpMV with P2P communication
4 w; = Ap,
5 // dot-product with global-reduce
6
7 g
8 // update solution and residual vectors
90 [Kj+1:=%j +a;p;
10: rii1:=r; —Q;Wj
11 // dot-product with_global-reduce
12 (Sgai=rl
13 if Converged then
14 break
15: else
16: // compute next search direction
17 By = 8;44.00;
18: [Pj+1:=rjt1 + Bip;)
19: end if
20: end for

_—
\\ EXASCALE
) COMPUTING
\ PROJECT
S

* CG is a popular iterative method for symmetric positive definite (SPD)
linear system, Ax = b.
* Itrelies on two types of kernels
— Matrix Vector multiply (SpMV)
« for generating Krylov subspace = span(p, Ap, A?p, ...)
¢ typically combined with precondiner to improve convergence

 used as a black box, provided by users, for supporting a wide range of applications

— BLAS-1 operations (focus of the paper)

» for computing search direction, to update solution and residual vectors

e two dot’s (with global all-reduce) and three axpy’s

e CQG iteration relies on efficient short-term recurrence, but
underlying BLLAS-1 kernels are latency bound with low performance

— could become significant in the iteration time (e.g., at large scale)




s-step Conjugate Gradient [Chronopoulos, Gear "89]

» s-step CG generates a set of s basis vectors at a time

— Potential reduction in communication cost by a factor of s L. forj=1,1-5+1,2-5+1,...do
) o 2: // Matriz Powers Kernel to generate Krylov space
¢ reducing latency cost (one synchronization per s steps) 3 fork=1,2,....sdo
¢ exposing more parallelism and data reuse (BLAS-3 instead of BLAS-1) ‘515 d[l‘fa;+k, Pj+k+1] == A [Fjtr—1,Pj+x]
. en or

* Require O(1) communication for generating O(s) basis vectors. 6: ompute new solution and residual vector
7 ith V' = [Pjij+s, Rj:jits—1]
8: e

g 9: [rj+37xj+17pj+2] = V[y,t,C]
* Two challenges for practical use 10: enLﬂﬁ ]

1. Computational overheads

2. Numerical stability
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Computational overhead (first challenge)

* In order to reduce communication, it requires additional computation

— Ifunderlying kernels are optimized for multiple vectors, performance may be improved

Require: SPD matrix A, RHS vector b, and initial approximate
solution vector x1
s e e s — - :
. ;,lr'j__b " QA "1’3; shrebieEn “s” SpMMs with two vectors = 2x flops,
g o S R . .
3: // SoMV with P2P communication L. forj=1,1-5+1,2-5+1,...do but two vectors at a time
4 | wj:=Ap; 2: // Matriz Powers Kernel to generate Krylov space
S5: D with global-reduce 3: for k=12 .. s do /
6: I /
7 4: [tj+k, Pjrk+1] == A [je—1,Pj+x]
8 5: end for
9: 6: Compute new solution and residual vector
o T GV with V= By, R o
12: 8 = ¥——— | | One dot-products with “2s+1” vectors = 2sx flops,
13: 9: ![rj+5,xj+1,pj+2] = Vly, t, C]] but with one SYRK
14: 10: end for %
15: else
16: // compute next search direction
17: Bity :=0i11/6;
18: Dj+1:="rjt1+5;D;
19: elLl it ]
20: end for

3 GEMVs with “2s5+1” columns = 2x flops,
but with one GEMM
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Strong-scaling results on Summit (V100 GPUs)
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* When communication (e.g., latency) becomes significant,
. s-step CG may reduce iteration time, even with the
I computational overhead
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Potential numerical instability with s-step CG (second challenge)

* Both convergence rate and attainable accuracy can deteriorate

* Potentially very ill-conditioned s-step basis vectors Vg
— Condition number k(¥ ;) can grow exponentially with s

— Orthogonality errors can grow quadratically to the condition number

¢ The Gram matrix G has the squared condition number
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Mixed-precision s-step CG with residual replacement on GPUs

for improving convergence and accuracy

» Higher-precision to improve convergence behavior [Carson, Gergelits, “21]
— form the Gram matrix G in double the working precision
— orthogonality error depends linearly, instead of quadratically,
to condition number of s-step basis vectors
e Residual replacement to improve solution accuracy [Carson, Demmel “14]
— replace computed residual vector with true residual vector at “selected” iterations

— the selection requires the computation of G = [Vi;_1y/s|” Vis_1ysls
in the working precision

— s-step CG obtains the same residual norm bound
as standard CG, O(e)lA[l|z|.
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1: r1 :=b— Ax1, 61 := rfrl, p1:i=r1
2:z=0

3: for j+ =5 do

4: // MPK (on GPUs) with P2P communication
5 Pj = Pjs Rj =Ty

6: Pj+1 = AP]‘

7. fork=1,2,...,s—1do

8: [Rjtk, Pjtk+1] = AlRjik—1, Pjtk]
9: end for

10: // dot-products (on GPUs) with global-reduce
11: G:= VL,TW,

12: where V,@ = [Pj;]‘+s,Rj;J‘+S_1] and £ := (j—l)/s
13: if Converged then

14: break

15: end if

16: // update coefficients (redundantly on each host)
17: Cc1 ‘= ey, t1 = €541, 6k = thtk

18: fork=1,2,...,sdo

19: dk = Bck, Yk = CkGdk, Qg = (Sk/"yk
20: Yk+1 = Yk + @kCk
21: tet1 =ty —agpdy
22} 6kz+1 = t£+1Gtk+1, Bk = 5k+1/6k
23: Cpt1 := tgi1 + Brek
24: if time to replace residual vector then
25: Xjtk =X + [PjijysRjjts—1]Y k41
26: Pj+k = [Pjij+sRjij+s—1]lCkt1
273 Z =72+ X 1k
28: rj+k =b— AZj+k
29: Xjtk =0

30: aii=

<) break

32 end if

33: end for

34: if not replaced then

35; // update vectors (on GPUs)

36: Xjts 1= X5 + [PyjtsRjj4s—1]yst1
37: Tjts = [PjijtsRjjts—1]tst1

38: Pj+s = [Pj:j+sRj:j+s—1]Cs+1

39: S:=s

40: end if

41: end for

42: x ;= Xend +z




Numerical results with mixed-precision s-step CG with RR

using 3D Laplace (n=1003)
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Both mixed-precision and RR are needed to obtain convergence similar to standard CG

Higher-precision improves the convergence
RR improves the accuracy
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Implementation for performance study on a GPU cluster (Summit)

MPI (cuda-aware) for data exchange between GPUs

Kokkos for portable performance on different manycore architectures

— we only show performance on NVIDIA GPUs,

Mixed-precision dot-products to compute G

— Itreads “big” tall-skinny V in working precision, but internally use higher precision to compute “small” G

— It is latency bound, hopefully with a small overhead (of computing and writing G in higher precision)

double or single precision as our working precision

- double working precision

typical for scientific and engineering application

may require software-emulated higher precision (double-double in our experiments on V100 GPUs)

- single working precision

SCP

experiments where higher precision is implemented by hardware,

practical use of single-precision CG exists, e.g., mixed-precision reliable updates and iterative refinements
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Performance of mixed-precision dot-products using Kokkos on one NVIDIA V100 GPU

dot-based GEMM, n = 500K

—— float

[|— float+double

——double

[ |— double+dd (cray)
| = double+dd (ieee)

latency bound

Number of columns, 2s+1
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The overhead tends to become smaller on multiple GPUs.
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Dot-products is often latency bound, and virtually no overhead using higher precision,
when implemented by hardware
For mixed singlet+double or uniform double, vs uniform single

Mixed-precision dot-products with Cray-style double-double requires 17x more flops,
while IEEE variant requires 21x more flops




Iteration time breakdown for single working precision on one NVIDIA V100 GPU

hardware-implemented higher precision

¢ Uniform precision 3D Laplace (nx=100) in single precision

0.3
- SpMM with two vectors is as fast as SpMV with one vector 0.28 - I Other _
- Vector-updates with multiple vectors continue to improve 0.26 - g’;‘:g ——
the performance with a larger s 0.24 =T o rrikad
— Dot-products improves the performance for a small s, 0.22
but the computational overhead (2s5%) becomes significant for a large s 0.2
_oq1gf R T
D
. .. o 0.16
e Mixed-precision, float + double, dot-product €014
— Input vectors are read in single precision = 0.12
- No overhead in performing multiply-add and write back G, 0.1
in double precision 0.08
— Any reduction in the iteration count has direct impact to time-to-solution, 0.06
no overhead even if not reduction in the iteration count 0.04
0.02
0
CG 1 2 3 4 5
Step size, s

Kernel performance study on one GPU (up to 1.1x),
while larger speedups on multiple GPUs
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Time-to-solution with mixed-precision single+double s-step CG on six NVIDIA V100 GPUs

hardware-implemented higher precision

3D Laplace with (nx =100)
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e s-step reduces the time-per-iteration, but can suffer from numerical instability

* mixed-precision improves the stability with virtually no overhead, leading to faster to solution
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Iteration time breakdown with double-precision on an NVIDIA V100 GPU

software-emulated higher precision
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* mixed-precision dot-products has significant overhead especially with a large s 137
1.2

— Overhead becomes smaller as latency become more significant on multiple GPUs
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Time-to-solution with mixed double + double-double s-step CG
software-emulated higher precision

Diagonal matrix(n=120K) on 6 GPUs
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Using diagonal matrix,

a;; = A+ (7, — 1)/(n — 1)()\71. - Al)pnii.

— Overhead of dot-products is more significant

— Allows controlling the conditioning of the matrix

Even with software-emulated higher precision,
there are cases where mixed-precision variant
reduces the time-to-solution

- when s-step CG suffers from instability
with a small step size, s




Mixed-precision s-step CG with residual replacement

1: r1 ;= b — Ax,, §1 := rfrl, p1:=r1

2:z2=0
3: for j+ =5 do . . .
43 MK (on GUS) with 2P commicafion * residual replacement to improve the attainable accuracy
: j =Py, Rj i=r;
2 f;fkl ::1‘4213 o idp — With residual replacement, s-step CG obtains the same residual norm bound
o d[?j+kypj+k+1] = AlRj 11, Pjyx] as standard CG, O(e)||A[||lz. [Carson, Demmel ‘14]
9: end for
}(l’f /é‘faz"l",’%d{jj” (on GPUs) with global-reduce — The detection require the computation of G = [V(;_1/s |T|V(j,1) als
12: whete Vy i= [P.j+as Risirai] and €= (§—1)/s in the working precision
13: if Converged then
}‘5‘{ endbiffeak — If the residual needs to be replaced before s-th step, we waste some computation needed to
16:  // update coefficients (redundantly on each host) form G; and also take a step smaller than s
17: C1 ‘= ey, t1 = €541, 5k = thtk
18: for k=1,2,...,sdo . . .
e di = Bow, 7 = 4Gy, k= 8/ 70 * dot-products is latency or bandwidth limited
. YEk41 ‘= Yk T OkCk . . . . o o o o o o o
21: O improve convergence (a fewer iterations) without significant increase in iteration time
22: Okr1 1= b4, Gt Br = Grt1/0k
23: Cr41 = try1 + Brck
24: if time to replace residual vector then
25: Xjtk = Xj + [Pj:j+sRjjts—1]¥kt1
26: Pj+k = [Pj:j+sRj:j4s—1]Cht1
273 Z =727+ Xji1k
28: l‘]+k =b— Az]+k
29: xj+k i=i0
30: Si=k
31 break
32: end if
33: end for
34: if not replaced then
35: // update vectors (on GPUs)
36: Xjts =X + [PjjrsRjjrs—1]ys+1
37: Tjts := [Pjjysljjrs—1]tst1
38: Pj+s = [Pj:j+sRj:j+s—1]Cs+1
39: S:=s

=\ 40: d if
S

42: x = Xend +z




Time-to-solution with mixed s-step CG with RR

Diagonal matrix(n=120K)

3D Laplace with (n_ = 100)
‘ ‘ = ‘ 10°
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10" ¢ ——s8=6, uniform |4 —s=5, ur]lform
— — 8=6, mixed — — s8=5, mixed

10°
107t

1072¢

Relative residual norm
Relative residual norm
S

>

W y
-15 | i «|
3l 10 \
10 Vi
i My
41 i ' N
10 L I 1 I 10-20 Il
0 0.02 0.04 0.06 0.08 0.1 0 0.05 0.1 0.15
Time (s) Time (s)

* RR adds overhead, but improves the attainable solution accuracy
* More results in paper
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Final remarks

* We studied mixed-precision s-step CG with residual replacements on GPUs

— When the higher-precision is supported by hardware, it improves the stability with virtually no overhead,
and hence reduces time-to-solution, or if not, no overhead.

— If the higher-precision requires software-emulation, the overhead becomes significant. It may still help when s-step CG becomes
unstable with a small step size, and the latency becomes significant in the iteration time.

* We are planning on some extensions/variations of the algorithm

— We have only looked at monomial basis. Combining these techniques with more stable basis (e.g., Newton, Chebychev) may further
improve the stability, and practicability, of s-step CG

— We only looked at two-term recurrence variant of s-step CG. There is also three-term recurrence variant, where relative cost of dot-
products is smaller in iteration cost, and hence the mixed-precision may be more attractive.

Thank you!!
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