SAND2022-7865C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government

Mixed Precision s-step Conjugate Gradient with
Residual Replacements on (NvIDIA) GPUs
E\(\g\\)P e

EXHSCHEE

Approved for public release

Ichitaro Yamazaki®, Erin Carson T, Brian Kelley

*Sandia National Laboratories, New Mexico, USA
TCharles University, Prague, Czech Republic
36th IEEE International Parallel and Distributed Processing Symposium (IPDPS)

June 2, 2022

%% U.S. DEPARTMENT OF Office of
m ENERGY | science

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy National Nuclear Security Administration under contract DE-NA0003525.

//A' VD ‘&

anlonll Nuclear Sacurlty Administration

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525

Aims with “Mixed Precision s-step Conjugate Gradient with Residual Replacements on (NVIDIA) GPUSs”

e improve the stability of the solver, using higher-precision arithmetic
with two main aims:

1. obtain higher accuracy (converging to lower residual norm)

2. improve performance (converging with a fewer iterations, but without significant increase
in the per-iteration time = faster time-to-solution)
* Careful design and implementation

— using higher precision only at the critical parts of the algorithms

— optimizing the underlying kernels for particular properties

_—
\ EXASCALE
COMPUTING
\ PROJECT

Conjugate Gradient (CG)

Require: SPD matrix A, RHS vector b, and initial approximate
solution vector x;
1: r1 :=b — Axq, 61 := rF{rl, p1L:=r1
2: for j=1,2,... do
3: // SpMV with P2P communication
4 w; = Ap,
5 // dot-product with global-reduce
6
7 g
8 // update solution and residual vectors
90 [Kj+1:=%j +a;p;
10: rii1:=r; —Q;Wj
11 // dot-product with_global-reduce
12 (Sgai=rl
13 if Converged then
14 break
15: else
16: // compute next search direction
17 By = 8;44.00;
18: [Pj+1:=rjt1 + Bip;)
19: end if
20: end for

_—
\\ EXASCALE
) COMPUTING
\ PROJECT
S

* CG is a popular iterative method for symmetric positive definite (SPD)
linear system, Ax = b.
* Itrelies on two types of kernels
— Matrix Vector multiply (SpMV)
« for generating Krylov subspace = span(p, Ap, A?p, ...)
¢ typically combined with precondiner to improve convergence

 used as a black box, provided by users, for supporting a wide range of applications

— BLAS-1 operations (focus of the paper)

» for computing search direction, to update solution and residual vectors

e two dot’s (with global all-reduce) and three axpy’s

e CQG iteration relies on efficient short-term recurrence, but
underlying BLLAS-1 kernels are latency bound with low performance

— could become significant in the iteration time (e.g., at large scale)

s-step Conjugate Gradient [Chronopoulos, Gear "89]

» s-step CG generates a set of s basis vectors at a time

— Potential reduction in communication cost by a factor of s L. forj=1,1-5+1,2-5+1,...do
) o 2: // Matriz Powers Kernel to generate Krylov space
¢ reducing latency cost (one synchronization per s steps) 3 fork=1,2,....sdo
¢ exposing more parallelism and data reuse (BLAS-3 instead of BLAS-1) ‘515 d[l‘fa;+k, Pj+k+1] == A [Fjtr—1,Pj+x]
. en or

* Require O(1) communication for generating O(s) basis vectors. 6: ompute new solution and residual vector
7 ith V' = [Pjij+s, Rj:jits—1]
8: e

g 9: [rj+37xj+17pj+2] = V[y,t,C]
* Two challenges for practical use 10: enLﬂﬁ]

1. Computational overheads

2. Numerical stability

_—
\\ EXASCALE
) COMPUTING
\ PROJECT
S

Computational overhead (first challenge)

* In order to reduce communication, it requires additional computation

— Ifunderlying kernels are optimized for multiple vectors, performance may be improved

Require: SPD matrix A, RHS vector b, and initial approximate
solution vector x1
s e e s — - :
. ;,lr'j__b " QA "1’3; shrebieEn “s” SpMMs with two vectors = 2x flops,
g o S R . .
3: // SoMV with P2P communication L. forj=1,1-5+1,2-5+1,...do but two vectors at a time
4 | wj:=Ap; 2: // Matriz Powers Kernel to generate Krylov space
S5: D with global-reduce 3: for k=12 .. s do /
6: I /
7 4: [tj+k, Pjrk+1] == A [je—1,Pj+x]
8 5: end for
9: 6: Compute new solution and residual vector
o T GV with V= By, R o
12: 8 = ¥——— | | One dot-products with “2s+1” vectors = 2sx flops,
13: 9: ![rj+5,xj+1,pj+2] = Vly, t, C]] but with one SYRK
14: 10: end for %
15: else
16: // compute next search direction
17: Bity :=0i11/6;
18: Dj+1:="rjt1+5;D;
19: elLl it]
20: end for

3 GEMVs with “2s5+1” columns = 2x flops,
but with one GEMM

_—
\\ EXASCALE
() COMPUTING
\ PROJECT
S

Strong-scaling results on Summit (V100 GPUs)

0.26
0.25|
0.24 |
0.23|
022}
021

02}
0.19|

@0.18}

© 017}

Eo1el
0.15]
0.14|
0.13|
012}
011}

01}
0.09|
0.08

—>—cg |
—O—s=1 |
—=—s=2 |

A o5 * 500 CG iteration time with 7-pts Laplace 3D (n,=100)

* When communication (e.g., latency) becomes significant,
. s-step CG may reduce iteration time, even with the
I computational overhead

X

123 6 12 18
GPUs

_—
\\ EXASCALE
() COMPUTING
\ PROJECT
S

Potential numerical instability with s-step CG (second challenge)

* Both convergence rate and attainable accuracy can deteriorate

* Potentially very ill-conditioned s-step basis vectors Vg
— Condition number k(¥ ;) can grow exponentially with s

— Orthogonality errors can grow quadratically to the condition number

¢ The Gram matrix G has the squared condition number

_—
\\ EXASCALE
() COMPUTING
\ PROJECT
S

10°

107

10710

10718

1020

10°

10

10710

Relative residual norm

10718

racy

Double
Lower accu
—CG, true
— — CG, computed
—s=1, true h7Y
N
—— s=1, computed \¥ es
—s=5, true g N
- — s=5, computed S\
—s=10, true AT
— — s=10, computed 8\
100 200 300 400 500 600
lteration
Single
LY
Nz
NA
- "
AN

0 100 200

300 400 500 600

Iteration

Mixed-precision s-step CG with residual replacement on GPUs

for improving convergence and accuracy

» Higher-precision to improve convergence behavior [Carson, Gergelits, “21]
— form the Gram matrix G in double the working precision
— orthogonality error depends linearly, instead of quadratically,
to condition number of s-step basis vectors
e Residual replacement to improve solution accuracy [Carson, Demmel “14]
— replace computed residual vector with true residual vector at “selected” iterations

— the selection requires the computation of G = [Vi;_1y/s|” Vis_1ysls
in the working precision

— s-step CG obtains the same residual norm bound
as standard CG, O(e)lA[l|z|.

_—
\\ EXASCALE
() COMPUTING
\ PROJECT
S

1: r1 :=b— Ax1, 61 := rfrl, p1:i=r1
2:z=0

3: for j+ =5 do

4: // MPK (on GPUs) with P2P communication
5 Pj = Pjs Rj =Ty

6: Pj+1 = AP]‘

7. fork=1,2,...,s—1do

8: [Rjtk, Pjtk+1] = AlRjik—1, Pjtk]
9: end for

10: // dot-products (on GPUs) with global-reduce
11: G:= VL,TW,

12: where V,@ = [Pj;]‘+s,Rj;J‘+S_1] and £ := (j—l)/s
13: if Converged then

14: break

15: end if

16: // update coefficients (redundantly on each host)
17: Cc1 ‘= ey, t1 = €541, 6k = thtk

18: fork=1,2,...,sdo

19: dk = Bck, Yk = CkGdk, Qg = (Sk/"yk
20: Yk+1 = Yk + @kCk
21: tet1 =ty —agpdy
22} 6kz+1 = t£+1Gtk+1, Bk = 5k+1/6k
23: Cpt1 := tgi1 + Brek
24: if time to replace residual vector then
25: Xjtk =X + [PjijysRjjts—1]Y k41
26: Pj+k = [Pjij+sRjij+s—1]lCkt1
273 Z =72+ X 1k
28: rj+k =b— AZj+k
29: Xjtk =0

30: aii=

<) break

32 end if

33: end for

34: if not replaced then

35; // update vectors (on GPUs)

36: Xjts 1= X5 + [PyjtsRjj4s—1]yst1
37: Tjts = [PjijtsRjjts—1]tst1

38: Pj+s = [Pj:j+sRj:j+s—1]Cs+1

39: S:=s

40: end if

41: end for

42: x ;= Xend +z

Numerical results with mixed-precision s-step CG with RR

using 3D Laplace (n=1003)

Uniform-precision

—CG
——CG+RR

g —s=5

o s=5, RR

5 ——s=10

8 ——s=10, RR|

©

7

9

(]

>

© RR

()]

0 v

10-15 ‘ :
0 500 1000 1500

P

EXASCALE
COMPUTING
PROJECT

Iteration

107}

10_10 fs

10718

Mixed-precision

0

100

200 300
Iteration

400

Both mixed-precision and RR are needed to obtain convergence similar to standard CG

Higher-precision improves the convergence
RR improves the accuracy

500

Implementation for performance study on a GPU cluster (Summit)

MPI (cuda-aware) for data exchange between GPUs

Kokkos for portable performance on different manycore architectures

— we only show performance on NVIDIA GPUs,

Mixed-precision dot-products to compute G

— Itreads “big” tall-skinny V in working precision, but internally use higher precision to compute “small” G

— It is latency bound, hopefully with a small overhead (of computing and writing G in higher precision)

double or single precision as our working precision

- double working precision

typical for scientific and engineering application

may require software-emulated higher precision (double-double in our experiments on V100 GPUs)

- single working precision

SCP

experiments where higher precision is implemented by hardware,

practical use of single-precision CG exists, e.g., mixed-precision reliable updates and iterative refinements

EXASCALE
COMPUTING
PROJECT

Performance of mixed-precision dot-products using Kokkos on one NVIDIA V100 GPU

dot-based GEMM, n = 500K

—— float

[|— float+double

——double

[|— double+dd (cray)
| = double+dd (ieee)

latency bound

Number of columns, 2s+1

_—
\\ EXASCALE
) COMPUTING
\ PROJECT .
S

The overhead tends to become smaller on multiple GPUs.

“NWPLPOIONROO =N

—— double+dd (ieee)
——double+dd (cray)

2 4 6 8 10

12

14 16 18 20

Number of columns, 2s+1

Dot-products is often latency bound, and virtually no overhead using higher precision,
when implemented by hardware
For mixed singlet+double or uniform double, vs uniform single

Mixed-precision dot-products with Cray-style double-double requires 17x more flops,
while IEEE variant requires 21x more flops

Iteration time breakdown for single working precision on one NVIDIA V100 GPU

hardware-implemented higher precision

¢ Uniform precision 3D Laplace (nx=100) in single precision

0.3
- SpMM with two vectors is as fast as SpMV with one vector 0.28 - I Other _
- Vector-updates with multiple vectors continue to improve 0.26 - g’;‘:g ——
the performance with a larger s 0.24 =T o rrikad
— Dot-products improves the performance for a small s, 0.22
but the computational overhead (2s5%) becomes significant for a large s 0.2
_oq1gf R T
D
. .. o 0.16
e Mixed-precision, float + double, dot-product €014
— Input vectors are read in single precision = 0.12
- No overhead in performing multiply-add and write back G, 0.1
in double precision 0.08
— Any reduction in the iteration count has direct impact to time-to-solution, 0.06
no overhead even if not reduction in the iteration count 0.04
0.02
0
CG 1 2 3 4 5
Step size, s

Kernel performance study on one GPU (up to 1.1x),
while larger speedups on multiple GPUs

_—
\\ EXASCALE
() COMPUTING
\ PROJECT
S

Time-to-solution with mixed-precision single+double s-step CG on six NVIDIA V100 GPUs

hardware-implemented higher precision

3D Laplace with (nx =100)

102 ‘

—CG

—— s=6, uniform
101t — — =6, mixed

Relative true residual norm

0 100 200 300 400 500
lteration

Relative true residual norm

3D Laplace with (nx = 100)

102

—CG

——s=6, uniform
101t — — =6, mixed |4

0 0.01 002 003 004 0.05 0.06 0.07 0.08
Time (s)

e s-step reduces the time-per-iteration, but can suffer from numerical instability

* mixed-precision improves the stability with virtually no overhead, leading to faster to solution

_—
\\ EXASCALE
() COMPUTING
\ PROJECT
S

Iteration time breakdown with double-precision on an NVIDIA V100 GPU

software-emulated higher precision

0.7 3D Laplace (nx=100) in double precision 003;1
Il Other 0.36 -
[Axpy 034,

0.6 Il Dots, uniform 1
I Dots, mixed-Cray

05F -SPMV 1
© 04 13x 13x 15x 18x 1.7x 21 1
£
Eos
0.2
0.1 1.9
1.8}
0 1.7t
cG 1 2 3 4 5 10 ol
Step size, s -
§15"
§ 1.4+
o
* mixed-precision dot-products has significant overhead especially with a large s 137
1.2

— Overhead becomes smaller as latency become more significant on multiple GPUs

-
e

—G~ s=2, mixed 7
~A—s=5
/>~ s=5, mixed |

-

_—
\\ EXASCALE
() COMPUTING
\ PROJECT
C

GPUs

12

Time-to-solution with mixed double + double-double s-step CG
software-emulated higher precision

Diagonal matrix(n=120K) on 6 GPUs

10° :
—CG
—s=5, uniform
s=5, mixed
1072

10712

10—14 L

|

10—16 L 1
0 100 200 300 400

Iteration count

_—
\\ EXASCALE
() COMPUTING
\ PROJECT
S

500 600 700

10°

1072\

Relative residual norm
-
o
[+

0.01 0.02 0.03 0.04 0.05
Time (s)

Using diagonal matrix,

a;; = A+ (7, — 1)/(n — 1)()\71. - Al)pnii.

— Overhead of dot-products is more significant

— Allows controlling the conditioning of the matrix

Even with software-emulated higher precision,
there are cases where mixed-precision variant
reduces the time-to-solution

- when s-step CG suffers from instability
with a small step size, s

Mixed-precision s-step CG with residual replacement

1: r1 ;= b — Ax,, §1 := rfrl, p1:=r1

2:z2=0
3: for j+ =5 do . . .
43 MK (on GUS) with 2P commicafion * residual replacement to improve the attainable accuracy
: j =Py, Rj i=r;
2 f;fkl ::1‘4213 o idp — With residual replacement, s-step CG obtains the same residual norm bound
o d[?j+kypj+k+1] = AlRj 11, Pjyx] as standard CG, O(e)||A[||lz. [Carson, Demmel ‘14]
9: end for
}(l’f /é‘faz"l",’%d{jj” (on GPUs) with global-reduce — The detection require the computation of G = [V(;_1/s |T|V(j,1) als
12: whete Vy i= [P.j+as Risirai] and €= (§—1)/s in the working precision
13: if Converged then
}‘5‘{ endbiffeak — If the residual needs to be replaced before s-th step, we waste some computation needed to
16: // update coefficients (redundantly on each host) form G; and also take a step smaller than s
17: C1 ‘= ey, t1 = €541, 5k = thtk
18: for k=1,2,...,sdo . . .
e di = Bow, 7 = 4Gy, k= 8/ 70 * dot-products is latency or bandwidth limited
. YEk41 ‘= Yk T OkCk o o o o o o o
21: O improve convergence (a fewer iterations) without significant increase in iteration time
22: Okr1 1= b4, Gt Br = Grt1/0k
23: Cr41 = try1 + Brck
24: if time to replace residual vector then
25: Xjtk = Xj + [Pj:j+sRjjts—1]¥kt1
26: Pj+k = [Pj:j+sRj:j4s—1]Cht1
273 Z =727+ Xji1k
28: l‘]+k =b— Az]+k
29: xj+k i=i0
30: Si=k
31 break
32: end if
33: end for
34: if not replaced then
35: // update vectors (on GPUs)
36: Xjts =X + [PjjrsRjjrs—1]ys+1
37: Tjts := [Pjjysljjrs—1]tst1
38: Pj+s = [Pj:j+sRj:j+s—1]Cs+1
39: S:=s

=\ 40: d if
S

42: x = Xend +z

Time-to-solution with mixed s-step CG with RR

Diagonal matrix(n=120K)

3D Laplace with (n_ = 100)
‘ ‘ = ‘ 10°
—cG —CG .
10" ¢ ——s8=6, uniform |4 —s=5, ur]lform
— — 8=6, mixed — — s8=5, mixed

10°
107t

1072¢

Relative residual norm
Relative residual norm
S

>

W y
-15 | i «|
3l 10 \
10 Vi
i My
41 i ' N
10 L I 1 I 10-20 Il
0 0.02 0.04 0.06 0.08 0.1 0 0.05 0.1 0.15
Time (s) Time (s)

* RR adds overhead, but improves the attainable solution accuracy
* More results in paper

_—
\\ EXASCALE
) COMPUTING
\ PROJECT
S

Final remarks

* We studied mixed-precision s-step CG with residual replacements on GPUs

— When the higher-precision is supported by hardware, it improves the stability with virtually no overhead,
and hence reduces time-to-solution, or if not, no overhead.

— If the higher-precision requires software-emulation, the overhead becomes significant. It may still help when s-step CG becomes
unstable with a small step size, and the latency becomes significant in the iteration time.

* We are planning on some extensions/variations of the algorithm

— We have only looked at monomial basis. Combining these techniques with more stable basis (e.g., Newton, Chebychev) may further
improve the stability, and practicability, of s-step CG

— We only looked at two-term recurrence variant of s-step CG. There is also three-term recurrence variant, where relative cost of dot-
products is smaller in iteration cost, and hence the mixed-precision may be more attractive.

Thank you!!

_—
\\ EXASCALE
) COMPUTING
\ PROJECT

Acknowledgements

This research was, in part, supported by the Exascale Computing Project (17-SC-20-SC), a joint project of the U.S. Department of Energy’s Office of
Science and National Nuclear Security Administration, responsible for delivering a capable exascale ecosystem, including software, applications, and

hardware technology, to support the nation's exascale computing imperative.

We thank the members of xXSDK multiprecision project, which is part of the Exascale Computing Project.

_—
\\ EXASCALE
() COMPUTING
\ PROJECT
S

