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Source Inversion / Identification in Climate Systems

I Climate effects are caused by a combination of confounding sources which interact
with the climate system through various feedbacks.

I The identification of sources in climate systems, be they natural or a result of human
intervention, is a vital problem for attribution and prediction of climate states.

I Due to the inability to isolate sources in nature and the computational cost of climate
simulators, surrogate models are required.

I Surrogate models enable the many-query algorithms required for exploration of the
inverse problem of source identification.

I Because inversion for a source is an ill-posed problem, it is natural to treat it as a
probabilistic problem, i.e., to construct a probability model that predicts the most
probable source and quantifies uncertainty in the predicted source.

I In this talk, we will focus on a high-dimensional synthetic example with a view to
applications involving E3SM and field data.
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Summary of method and results

I Assuming the source represents injection of SO2 and we observe concentratation, we
introduce a framework to identify the source characteristics in time by:

1. Calibrating deep operator network surrogates to the flow maps provided by an
ensemble of simulations obtained by sources with different forcing time profiles,

2. Setting up a Bayesian framework for a distribution over the forcing profiles,
3. Using the trained surrogates and Bayesian framework together with automatic

differentiation in an optimization framework to identify sources from sparse and
noisy observations.

I We apply the framework to a synthetic model based on an
advection-diffusion-reaction equation that includes effects of diffusion, wind, gravity,
chemistry, and a volcano source and O(105) degrees of freedom.

I The expressive and computationally efficient nature of the deep operator network
surrogates allows for source identification in a complex system from comparatively
limited data

I This opens the door for applications such as simulations/observations of Mt.
Pinatubo eruption.
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Basic Variables and Problem Statement

I State: represents concentration on the domain Ω = (0, L1)× (0, L2), and maps

u : Ω× [0, T ]→ R, (x, t) 7→ u(x, t). (1)

I Forcing function: represents injection of concentration on Ω, and maps

f : Ω× [0, T ]→ R, (x, t) 7→ f(x, t). (2)

I Forcing amplitude: the forcing function is written as

f(x, t) = z(t)F (x), (3)

where F is a known spatial profile that is fixed in time, and z is a function in time
that is decaying. We refer to z(t) as the forcing amplitude.

I Problem statement: given F and training data (zm, um)Mm=1 consisting of M
known forcing amplitudes zm and the corresponding observed concentration um,
predict an unknown forcing amplitude z given noisy and sparse observations of a
concentration u that is not in the training set.
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The SO2 Plume Synthetic Model

Figure 1: Illustration of the SO2 concentration modeled by the Gaussian Plume synthetic
model at various times.

I 2D model in longitude (x1) and altitude (x2). We have studied models in latitude and
longitude, and plan to work in 3D, but for this talk we will only present this model.

I Based on Stockie’s “The Mathematics of Atmospheric Dispersion Modeling”, SIAM
Review 2011.

I Simulated numerically to using a similar number of degrees of freedom as for a 3D
E3SM run for a single quantity of interest.

5



The SO2 Plume Synthetic Model

We consider a model for atmospheric transport of sulfur dioxide SO2 in a rectangular
region in space parametrized by longitudinal position x1 and altitude x2. We denote the
concentration by u(x1, x2, t) at time t. We take L1 = 200 (km), L2 = 20 (km), and
generate u as the solution to the equations

∂u

∂t
− κ∆u+ v · ∇u− Se2 · ∇u = R(u) + f on Ω× [0, T ]

∇u · n = 0 on ∂Ω× [0, T ]

u = 0 on Ω× {0}
where κ is the diffusion coefficient,

v = (v1(x1, x2, t), 0)

describes the wind, with

v1(x1, x2, t) =

(
1 + 0.1 cos

(
2πt

60

))
×
(

1 + 0.2 cos

(
6πx

40

)
− 0.1 sin

(
4πx

40

))(
0.25 + 3.75 sin

(πx2

20

))
.
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The SO2 Plume Synthetic Model: ∂u
∂t − κ∆u+ v · ∇u− Se2 · ∇u = R(u) + f

The term

Se2 = (0, S) =

(
0,

√
8

3

ρSO2

ρatmo

g

Cs
r

)
describes the effect of the particles falling due to gravity with a terminal speed S, and

R(u) = −γu

is the reaction function modeling chemistry with γ being the e-folding time. We generate
data using the forcing term

f(t, x1, y2) = z(t) exp
(
−100(x1 − 5)2

)
exp

(
− (x2 − 5)2

16

)
with forcing amplitude

z(t) = λ1 exp (−λ2t) (4)

to model SO2 injection.
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Surrogate Model Problem Statement

I State vector: discretized over a spatial grid of d points in Ω and N times, the state u
is represented by a series of vectors

un ∈ Rd, n = 0, 1, 2, ..., N. (5)

I Forcing amplitude vector: discretized at the same times as the state vector, z is
represented by a vector

z ∈ RN . (6)

I Surrogate model problem statement: we seek a data-driven approximation to
the map

B : (u0, z) 7→ {un}Nn=1 (7)

that is trained using data generated by solving the above differential equations.
Evaluation of this map will allow for inverting for z given observations of the state.

I Rather than approximate this map directly, we construct a surrogate for the
flow map

A : (un, z) 7→ un+1, n = 0, 1, 2, ..., N − 1. (8)

Then, B is given by repeatedly composing A with itself.
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Ensemble of solutions to calibrate surrogate

I Given M initial conditions and corresponding forcing functions, the discretized state
vectors and forcing function vectors are written as

um
0 ∈ Rd,um

1 ∈ Rd, ...,um
N ∈ Rd and zm ∈ RN . (9)

I Thus, the superscript m indexes different pairs of forcing amplitude and
concentration, while for each m the subscript n indexes different times of the
concentration.

I In the examples presented here, we take um
0 = 0, and vary z.

Figure 2: Ensemble of exponentially decay forcing
amplitudes used to generate data for training and
testing. The training data is generated using
combinations of λ1 ∈ {2000, 3000} and
λ2 ∈ {0.005, 0.01}, and the test data is generated
using (λ1, λ2) = (2500, 0.0075).
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PCA for dimension reduction

I PCA dimension reduction: given a target dimension r, we assemble the data and
perform an SVD decomposition as[

u1
1| . . . |u1

N |u2
1| . . . |u2

N | . . . |uM
1 | . . . |uM

N |
]
≈ UrΣrV

>
r . (10)

I Here, the left-hand side represents the d×MN matrix of all N state vectors
corresponding to the M solutions, Ur represents the d× r truncated matrix of left
singular vectors, Σr represents the diagonal matrix of first r singular values, and V
represents the MN × r represents the truncated matrix of right singular vectors.

I Then[
c1

1| . . . |c1
N |c2

1| . . . |c2
N | . . . |cM1 | . . . |cMN |

]
= U>r

[
u1

1| . . . |u1
N |u2

1| . . . |u2
N | . . . |uM

1 | . . . |uM
N |
]

(11)

gives the assembly of r-dimensional reduced state vectors cmn corresponding to um
n .

I In other words, the cmn represent the coefficients of the state um
n in the PCA basis.
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Operator Learning Setup

I PCA projection and reconstruction: left multiplication by U>r of a matrix Q with d
rows is referred to as “PCA Projection”:

PCA Projection
(

Q
)

= U>r Q. (12)

I Left multiplication by U of a matrix Q with r rows is referred to as “PCA
reconstruction”:

PCA Reconstruction
(

Q
)

= UrQ. (13)

I Operator learning setup in reduced coordinates: we seek Ared such that

A ≈ PCA reconstruction ◦Ared ◦ PCA projection, (14)

i.e., so that the following diagram approximately commutes:

umn umn+1

cmn cmn+1

A(·,z)

PCA projection

Ared(·,z)

PCA reconstruction (15)

I We refer to Ared as the surrogate flow map between reduced spaces.
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Deep Neural Network Operator Surrogate

I We consider a family of neural networks NN : Rr × RN → Rr consisting of L hidden
layers of width r composed with a final linear layer:

NN (c, z; ξ) = W ◦Φ(c, z; ξH), (16)

W and ξH are the parameters corresponding to the final linear layer and the hidden
layers, respectively; their union is ξ.

I We make use of a given neural network architecture, but instead of modeling
cn+1 = NN (cn, z), we have

cn+1 = Ared(cn+1, z) = cn + ∆tNN (cn, z), n = 1, 2, ... (17)

where ∆t is the time difference between steps n and n+ 1.

I This amounts to a ResNet-like skip connection for the final output of the DNN that is
informed by the time step ∆t and is suggested by the forward Euler discretization.

I Since our networks aren’t very deep, we use a plain DNN architecture:

Φplain = σ ◦ TL ◦ · · · ◦ σ ◦ T1 (18)

where Φ is the vector of the r functions Φi, σ the vector of r copies of σ.
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Loss, Training, and Prediction

I Multistep Loss: given forcings zm and corresponding solutions [cm0 , c
m
1 , ..., c

m
N ] in

reduced space for m = 1, 2, ...,M ,

Loss(ξ) =

M∑
m=1

N−1∑
n=0

P∑
p=1

‖cmn+p − [NN (·, z; ξ)]p(cmn , z)‖2`2 (19)

I The DNN is initialized using default Glorot initialization, and trained using the adam

gradient descent optimizer with an exponentially decaying learning rate schedule.

I Prediction: given forcing vector z, the prediction in reduced space is,

cm,∗
n ≈ [NN (·, z; ξ)]

n
cm0 (20)

Then, the predicted state is given by

um,∗
n = PCA Reconstruction (cm,∗

n ) . (21)
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Surrogate Flow Map Training Results

Figure 3: Loss vs number of steps of
adam optimizer (Epochs) for an ensemble
of 3 forcing, concentration pairs (Train).
The same loss function is monitored for
a different forcing, concentration pair
(Val) to watch for overfitting.

There are many options for the selection of ∆t, DNN architectures, and hyperparameters
related to training. With appropriate choices, we are able to achieve O(1%) relative `2

reconstruction error in the predicted flow using the trained surrogate.
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Bayesian Model

I Observation operator: O : Rd → Rq, where q is the number of locations where data is
observed in space at each time step

I Assume that observed data is contaminated with mean zero Gaussian noise with a
covariance matrix Γnoise ∈ Rq×q. The likelihood function is defined as the difference
between the DNN prediction [NN (·, z; ξ)]

n
u0 and the observed data

D = [Ou0,Ou1, ...,OuN ] (22)

in the noise model weighted inner product,

πlike(z|D) ∝ exp

(
−1

2

N∑
n=1

‖Oun −O [NN (·, z; ξ)]
n

u0‖2Γ−1
noise

)
(23)

Figure 4: Sparsely scattered observations of the
concentration at a given timestep, from which the source z
is inferred.
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Bayesian Model

I Prior distribution: assume a Gaussian distribution for the source z as a prior with
mean z and covariance Γprior ∈ Rk×k:

πprior(z) ∝ exp

(
−1

2
‖z− z‖2

Γ−1
prior

)
(24)

I Bayesian inverse problem to estimate a source z,

πpost(z|D) ∝ πlike(z|D)πprior(z), (25)

where πpost is the posterior probability distribution for z given the prior distribution
πprior for z and the likelihood function πlike.

I Maximum a posteriori probability (MAP) point: the point z for which the posterior
PDF πpost attains its maximum value. It may be computed by minimizing the
negative log of πpost, or equivalently solving

min
z∈Rk

J(z) =
1

2

N∑
n=1

‖Oun −O [NN (·, z; ξ)]
n

u0‖2Γ−1
noise

+
1

2
‖z− z‖2

Γ−1
prior

(26)
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Optimization and sampling algorithm

I We minimize J(z) to find zMAP. using a truncated CG trust region algorithm in the
Rapid Optimization library (ROL), part of the Trilinos project.

I The gradient is computed by solving the adjoint equation corresponding to the
discrete time stepping algorithm

I The Neural Network Jacobians are computed using the automatic differentiation tools
in Tensorflow, and passed to ROL.

I A Gauss-Newton Hessian approximation is used to leverage for the Neural Network
Jacobians for an efficient Hessian approximation.

I We approximate samples from πpost by assuming that πpost is the PDF for a Gaussian
distribution the mean of which is zMAP and with covariance given by the inverse
Hessian of J evaluated at zMAP.
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Summary of Model and Optimization

Compressed
Representation,
time step k
(dim = O(10))

Compressed
Representation,
time step k+1
(dim = O(10))

PCA
Projection

PCA
ReconstructSurrogate Operator

Evolution
Operator

dim = O(10^5) dim = O(10^5)

Figure 5: Diagram of the complete Bayesian model for evaluating posterior probability of z
given noisy, scattered observations utilizing a surrogate model for the flow map that is
informed by an ensemble of simulations.
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Results

Figure 6: Prior (left) and posterior (right) distribution over z, predicted using the
observations illustrated in Figure 4 and the data shown in Figure 2.

I The observations for the prediction of z are contaminated with multiplicate Gaussian
noise

I For the posterior: the black curve is the testing data (which was never used in the
training), the blue curve is the MAP point, and the grey curves are samples from the
posterior distribution.
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Conclusions and Future work

I The method provides efficient and reasonably accurate source inversion and UQ given
scattered, noisy observations and utilizing a surrogate model trained on only a limited
ensemble of simulations.

I The effect of increasing/decreasing data and noise on the source prediction fidelity
must be explored.

I There are a vast array of options for all stages of constructing the surrogate operator
A. We are working on an optimization suite to automate the architecture, loss, and
training hyperparameter optization of the trained A.

I Proceed to study 3D simulation datasets, including E3SM simulations of the Mt.
Pinatubo eruption.
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