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3D Imaging Measurements

Background and Motivation

Background:

Impact Speed: 382 + 4 ft/sec
Impact Angle: 1.4 + 0.3°
Angle of Attack: 1.9 £ 0.3°
Distance From Target Center: 0.12 + 0.01"

« Computational simulation to reduce expensive experimentation.

unit velocity vector

« Simulation accuracy is crucial, requiring robust calibration. B T
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» Accuracy is enabled by robust measurements via digital image
correlation (DIC) and inverse parameter identification techniques
such as finite element model updating (FEMU).

Sandia National Labs Ballistic Rocket Sled Test
(December 2015)
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Problem:
» DIC-measured strains suffer from a filtering bias caused by estimating
the average strain across an area called a virtual strain gage (VSG).

Goal:

 We seek to account for the mismatch between the strains calculated
through FEA and measured via DIC for the purpose of material model
calibration.
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Lance, BW, & Carlson, MD. "Compact Heat Exchanger Semi-
Circular Header Burst Pressure and Strain Validation."
Proceedings of the ASME Turbo Expo 2019

ILLINOIS




DIC experiences length-scale dependent filtering biases
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DIC results for a synthetic
experiment.

subjected to uniaxial tension strain attenuation
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The filtering causes a mismatch between FEA and DIC
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Lava P, Jones EMC, Wittevrongel L, Pierron F, (2020) Validation of finite-element models using full-field experimental data: Levelling finite-element
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Finite Element Model Updating (FEMU)
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Newton- Raphson Optimization
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€,,,: the DIC measured strain
€.: the FEM calculated strain
N,: the number of strain measurements

[H]: the Hessian matrix [Hi] = [Si]t[gi]

_ 9(ekem)

[S]: the sensitivity matrix [S]
apj

Mathieu, F., Leclerc, H., Hild, F. et al. Estimation of Elastoplastic Parameters via Weighted FEMU and
Integrated-DIC. Exp Mech 55, 105-119 (2015). https://doi.org/10.1007/s11340-014-9888-9
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Direct of interpolation of FEA strain (ie unlevelled) for
comparison is ill-advised

ABAQUS Logarithmic Y-Strain

Unlevelled
DIC Step Size
FEA strains to DIC
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Strains computed using different:
- Calculation method

- Spatial resolution

- Tensor!
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Logarithmic Strain (ABAQUS)

£ = In(vB) = In(F - FT)
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Direct interpolation of displacement is better

Unlevelled ABAQUS V-Displacement

DIC Step Size

FEA

|

FEA Disp.— DIC
Grid

FEA strains to DIC
Grid «

The FEM data is uncorrupted with
only small errors due to registering
to DIC grid.
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DIC-Levelling corrects for DIC errors

E
Unlevelled yy
I 0.07
FEA strains to DIC
Grid ﬁ FEA

|

FEA Disp.— DIC
Grid

(Lava 2020)

DIC-Levelling

0.00

Generate F-SID

image o S
Mesh to pattern alignment DIC Analysis of F-SID image

Rectifies issues with strain calculation, spatial resolution, and image
DIC based on based errors such as interpolation bias, image discretization, PIB. Does
Experiment _ _
not account for image noise.
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Direct-levelling the FEA output as a simple solution
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Material Model for FE Model

304L stainless steel tensile specimens Material hardening is given by the

power law:
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FEMU Calibration via direct-levelling: FE model
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Generation of Synthetic Images as “experimental” data
(a) (b) (c)
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Effect of direct-levelling on parameter identi
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Conclusions and Future Work

Summary
- The errors due to the filtering effect of DIC

can cause false errors when comparing DIC to Identification errors using a DIC VSG of 0.8 mm
FEA

- Properly levelling the FEM to the DIC results Levelling Unlevelled
is important for an accurate calibration. Levelled

8.42% -0.15%

- Direct-levelling as opposed to full DIC-

Qo
levelling is sufficient to obtain an accurate 'é E 9.19% -0.03%
FEMU identification -4.12% 0.26%
e el . = 8.92% 0.55%
Limitations Z 8.96% 0.39%
=

This method does not account for image-induced

errors which we show is small compared to the
filtering effects of DIC. Identification errors have been reduced

more than 10X for the identification
results using noisy images

-4.43% -0.40%
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Supplemental Slides: Identification Errors

DIC Step
Size (pixels) 7

Fun. Quadratic | Quadratic | Quadratic Quadratic
7 7 7 7 2

Levelling UL TL SL SL  SSL&SL SL
B 8.42% -0.56%  -0.15% 0.76% 0.16% 0.04%
BE: o 9.19% 0.76%  -0.03% 1.20% 0.40% 0.11%

= T 4 10% 2.56% 0.26%  2.03% 0.37% 0.21%
T . 8.92% 0.24% 0.55%  1.28% 0.68% 0.40%
D S5 8.96% 0.70%  -0.39% 0.58% -0.31% -0.36%
< 4.43% 2.13%  -0.40% 1.16% -0.54% -0.25%
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