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Universal Cookoff Model (UCM)
HMX (PBX 9501)TATB (PBX 9502)RDX (Comp-B) PETNUSS Forrestal 134 deaths
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Original Current
Use the following modified Arrhenius rate 
expression for each reactive component:

𝑟 = 𝐴
𝑃
𝑃!

"
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Combining several phenomena into a single 
rate expression makes parameterizing the 
model simple and accurate.



3

The form of the rate expression is key
(Comp-B mechanism used as example)
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Flexibility

Negative s autocatalytic
Positive s diffusion limited
s  Fit with pressure profile data
E fit with vented data
n fit with sealed data
m fit with ignition data
l fit with ignition data

A single modified Arrhenius rate expression can fit data as good or better than multiple 
Arrhenius rate expressions.

Cosine ramps are 
currently used for the 
acceleration terms to 
permit precise 
specification of the 
temperature where 
the rates change.
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MicroMechanics Pressurization (MMP) model 
developed for high density explosives where 
the decomposition gases are initially 
impermeable to decomposition gases
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Micromechanics Pressurization model
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Micromechanics Pressurization model

ro Initial defect radius.
bo Half the initial distance

between defects.

r Initial radius plus
radial increase due
to decomposition.

a Defect radius resulting from
chemistry and mechanical
deformation.

b Half the distance between
defects.

Initial Chemistry Mechanics

ro
bo

ro
bo

r
ro
bo

r a

b

MMP model gives better pressure for high-density pressed 
explosives (e.g., PBX 9501, PBX 9502, etc.)
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MMP predicts thermal damage in HMX based explosive
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Micromechanics pressurization MMP model

Model couples chemistry and mechanics.

Gas-filled pores/reaction nucleation sites

Pore spacing:  2r0

Internal Pressure, P

PP
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displacement at inner surface:

The idea is that one can:
1. determine the effective pore size and internal 

pressure by balancing the internal gas with material 
strength properties;

2. use internal pressure in chemical reaction models;
3. start to address permeability prediction (so far used 

in a gross sense, either “non permeable” or “fully 
permeable”) by using percolation limits of pore 
density and size;

4. do this without having to resort to an expensive full 
poromechanics formulation & code (i.e. it is still 
tractable).

radial stress at inner surface:

Use mesoscale FE modeling to investigate some 
key assumptions of MMP model:

• How reasonable is the assumption that pores remain 
isolated from each other as they grow from chemical 
reaction producing gases?

• At what conditions would interactions of pores produce 
“connectedness” which would allow permeation of 
gases?

• Are there aspects from a group (rather than single pore) 
analysis which would help improve MMP model?

• Etc.
• Status: work in progress, plan to continue through FY22 
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Micromechanical Pressurization (MMP) model
• Based on simple analytic expressions for deformation 

in a spherical pressure vessel 

Pore spacing is ~2bo
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UCM/MMP ARIA implementation of HMX/NC/K10 of SITI

SITI configuration

SITI schematic

XCHEM—1D adaptive gridding ARIA—2D axisymmetric

ARIA model lacks volume change associated with b-d polymorph
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UCM/MMP ARIA implementation of HMX/NC/K10 of ODTX and ODTV
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UCM/MMP Predictions of Thermal Damage in ODTV
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Challenge is to incorporate these results into violence predictions.



Programmed burn vs multimaterial DDT
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Programmed burn is not close. However, DDT models are promising even 
though the density used was only 1.4 g/cc and the VCCT was 1.8 g/cc
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Fragmentation based on fracture toughness
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M. E. Kipp, D. E. Grady and J. W. Swegle, International Journal of Impact Engineering, 1993, 14, 427.
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The agreement was obtained by judicious selection of the temperature exponent n (-3.5) in the 
equation and usage of the experimentally measured velocities rather than the predicted velocities. 



Summary and conclusions
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oUCM model uses 1 modified Arrhenius rate for each reactive 
ingredient.
oUCM reaction rate is a function of temperature, pressure, phase
oMMP model determines effective pore size by balancing  internal gas 
generation with mechanical strength. 
oUCM/MMP models can be calibrated with two experiments, but 
cannot model aging without additional experimetns.
oUCM/MMP model has been validated with several materials and is 
native in SIERRA/ARIA
oModel is sensitive to both temperature and pressure. 
oPost-ignition violence was estimated based on DDT simulations


