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/ Universal Cookoff Model (UCM)
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//I-he fOrm Of the rate eXpreSSiOn iS key Cosine ramps are
7 (Comp-B mechanism used as example) / currently used for the

acceleration terms to
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A single modified Arrhenius rate expression can fit data as good or better than multiple
Arrhenius rate expressions. ‘




7" MicroMechanics Pressurization (MMP) model
developed for high density explosives where
the decomposition gases are initially
Impermeable to decomposition gases
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// Micromechanics Pressurization model

Initial Chemistry Mechanics

r, Initial defect radius. rInitial radius plus . Dhefeq Ead|usdresultr|]ng'fro|m
b, Half the initial distance radial increase due é $m|s rtyan mechanits
between defects. to decomposition. clofmation.

b Half the distance between
defects.

MMP model gives better pressure for high-density pressed
explosives (e.g., PBX 9501, PBX 9502, etc.)




// MMP predicts thermal damage in HMX based explosive
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Combined UCM/MMP model predicts transient evolution of permeability.




Mi/cromechanical Pressurization (MMP) model
» Based on simple analytic expressions for deformation
in a spherical pressure vessel
radial stress at inner surface:
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displacement at inner surface:
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The idea is that one can:

1. determine the effective pore size and internal
pressure by balancing the internal gas with material
strength properties;
use internal pressure in chemical reaction models;
start to address permeability prediction (so far used
in a gross sense, either “non permeable” or “fully
permeable”) by using percolation limits of pore
density and size;

4. do this without having to resort to an expensive full
poromechanics formulation & code (i.e. it is still
tractable).

e

/I\/Iicromechanics pressurization MMP model

Use mesoscale FE modeling to investigate some
key assumptions of MMP model:

* How reasonable is the assumption that pores remain
isolated from each other as they grow from chemical
reaction producing gases?

+ At what conditions would interactions of pores produce
“connectedness” which would allow permeation of
gases?

* Are there aspects from a group (rather than single pore)
analysis which would help improve MMP model?

* Etc.

« Status: work in progress, plan to continue through FY22

Gas-filled pores/reaction nucleation sites
Internal Pressure, P

Model couples chemistry and mechanics.

—

Pore spacing is ~2b, ‘
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UCM/MMP ARIA implementation of HMX/NC/K10 of SITI

SITI configuration XCHEM—1D adaptive gridding ARIA—2D axisymmetric
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ARIA model lacks volume change associated with —d polymorp
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Pf/UCI\/I/I\/II\/IP ARIA implementation of HMX/NC/K10 of ODTX and ODTV
/g
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//UCI\/I/I\/II\/IP Predictions of Thermal Damage in ODTV
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Challenge is to incorporate these results into violence predictions.
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Velocity of outer confinement, km/s

4 Programmed burn vs multimaterial DDT
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Programmed burn is not close. However, DDT models are promising even
though the density used was only 1.4 g/cc and the VCCT was 1.8 g/cc




Fragmentation based on fracture toughness
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M. E. Kipp, D. E. Grady and J. W. Swegle, International Journal of Impact Engineering, 1993, 14, 427.

The agreement was obtained by judicious selection of the temperature exponent n (-3.5) in the.
equation and usage of the expérimentally measured velocities rather than the predicted velocities. ‘



Summary and conclusions

oUCI\/I model uses 1 modified Arrhenius rate for each reactive
ingredient.

oUCM reaction rate is a function of temperature, pressure, phase

oMMP model determines effective pore size by balancing internal gas
generation with mechanical strength.

oUCM/MMP models can be calibrated with two experiments, but
cannot model aging without additional experimetns.

ocUCM/MMP model has been validated with several materials and is
native in SIERRA/ARIA

oModel is sensitive to both temperature and pressure.
oPost-ignition violence was estimated based on DDT simulations




