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2 | Talk Outline

 Brief motivation and introduction to ice sheet models
* |ce sheet initialization (ProSPect/FASTMath)
« Approaches to speed up the uncertainty quantification
o Multifidelity approach for uncertainty quantification (ProSPect/FASTMath)

o Neural Network surrogate to accelerate simulations (PhILMs/ProSPect)
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‘ Brief Motivation an basic physics

* Modeling ice sheets (Greenland and Antarctica) dynamics 1s essential to provide estimates for

sea-level rise in next decades to centuries.

* Ice behaves like a very viscous shear-thinning fluid (similar to lava flow) driven by gravity.

* Several unknown or poorly known parameters (e.g. basal friction, bed topography)

and processes (calving laws, basal hydrology)

Perito Moreno glacier front

Bedrock




Model: Ice velocity equations

Stokes equations:

—V-0=pg
V-u=90 ™~ gravit. acceleration

™~

ice velocity

Stress tensofr:

1
o=2uD —pl, Djj(u)= 5 (

633’3' (9.CBZ

Ice viscosity (dependent on temperature):

1 1
= EA(T) D(u)|=~", n>1, (tipically n ~ 3)

In this work we use a simplification of Stokes equations, called First Order equations, obtained

by scaling arguments given the shallow nature of the ice sheets and using hydrostatic pressure.




‘ Model: Ice velocity equations

Stokes equations:

_V.O':pg
V-u=0

Sliding boundary condition at ice bed:

{ u-n =0, (impenetrablity)
(011)” — ,811

Free slip: 5 =0
Noslip: =00

bed



Increasing fidelity and cost

Hierarchy of approximations of Stokes equations

I
Stokes equations are typically simplified exploiting the shallow nature of the ice sheets
and using hydrostatic pressure. |
e membrane stress tensor
First Order (FO) model —VN- (QMD) = 0:(n ) = _/09;5 >_proml_tl10n i
(3D elliptic PDE) 2uDn = Su, on bed upper surface | ‘
/N
Mono-Layer Higher-order (MOLHO) model  Solve FO with trial function B
(two 2d PDEs) u=1u(r,y)+ uge(r,y) @(2) |
Shallow Shelf Approx. (SSA) ; - o FERICS
(2d PDE, for floating fast-flowing ice) —V (2“HD(U)) +fu=—pgHVs L FEN N
(prototypmg)I
| Shallow Ice Approx. (SIA) B 2Ap°g> pg ‘
(for grounded slow-flowing ice) u = ( 5 H4|V5| 3 H) Vs I




7 I Model: Temperature equation

Heat equation (for cold ice):

peOT +V - (IVT) + peu- VT = 4u|D(u)|?

/ dissipation
conductivity heat capacity heating

frictional

Boundary condition at the ice bed heating
(includes melting and refreezing): m =G + Slu|* —kVT -n
/ 8\ temperature

melting geothermal flux
rate heat flux

In this work we use a enthalpy formulation that accounts for temperate ice as well. I




Software: MPAS-Albany Land Ice model (MALI)

ALGORITHM SOFTWARE TOOLS

Linear Finite Elements on tets/prisms Albany Land Ice

Optimization ROL =g
Nonlinear solver (Newton method) NOX _2_
Krylov linear solvers/Prec Belos/Muelu, Belos/FROSch =
Automatic differentiation Sacado I‘

MPAS (Model for Prediction Across Scales): Fortran, finite volumes library, conservative
Lagrangian schemes for advecting tracers (evolution of ice thickness)

Albany Land Ice: C++ finite element library built on top of Trilinos achieving performance
portability through Kokkos programming model. Provides large scale PDE constrained
optimization capabilities

References:

Hoffman, et al. GMD, 2018 M P AS
Tuminaro, Perego, Tezaur, Salinger, Price, SISC, 2016.

Tezaur, Perego, Salinger, Tuminaro, Price, Hoffman, GMD, 2015 Model for Prediction Across Scales
Perego, Price, Stadler, JGR, 2014




Ice sheet initialization
(w/ K. Liegeois, T. Hillebrand, M. Hoffman and S. Price)

Goal: Find the initial/present-day thermo-mechanical state of the ice sheet and estimate the
unknown/pootly known model parameters, by matching observations

Approach: PDE-constrained optimization

Find basal friction coefficient £ that minimizes the
mismatch with surtace velocity:

_ 2
man(,B) =j |u uobsl
b Q

+R(p)

0-2

Subject to the coupled velocity/temperature problem

unknown sliding

. parameter g3
Software Requirements

* Large Scale optimization library (ROL), featuring gradient-based methods (ROL)
* Computation of gradients of the PDE residual and the loss functional w.r.t. the solution and

the parameters. Automatic Differentiation is crucial for complex physics m
* TFaster, more robust methods available using Hessian (second derivatives) '

RAPID OPTIMIZATION LIBRARY



0 | lce sheet initialization
Hessian computation using automatic differentiation (using Sacado package)

Newton-Krylov optimization methods require Hessian mat-vec products:

T T
Hessian of residual f dotted with the Ouu(4" f(W,p)) v, Oup(4 f(u,p)) v, \}/(V'O'.kLI'Dy .
.1 . . . 1Im L1€geois
Lagrange multiplier 4 in the direction : O ( ATf(u,p)) v, B ATf(u,p)) v g

Computed w/ automatic differentiation,
differentiating twice, based on the formula:

Opp I v = 3. (3, I + 7))

r=0
We also build the sparse matrix Hy, = 0py J, efficiently computed using coloring, seeding and performing
mat-vec products.

H,, is used to define a Hessian-based vector-product for the Optimization package ROL instead of the
Euclidean dot-product, leading to improved convergence of the optimization algorithms.



1 ‘ Thermo-mechanical initialization of Greenland ice sheet

observed ice speed

-

b =

de+l 4de+2 4.0e+03

 mm

40e-02 04 4.

-

S

modeled basal friction

Hessian based
dot-product led
to 5x speed-up

1.0e-01 1 10 100 1.0e+03

e

modeled temperature

2400 245 250 255 260 265 2731
\ \ \

300K parameters, 14M unknowns. Initialization: ~10 hours on 2k nodes on NERSC Cori (Haswell),
The optimization 1s constrained by the coupled velocity-temperature solvers. Most large scale-ice sheets codes constrain the
optimization only with the velocity solver, which results in a temperature field that is not consistent with the velocity



2 I Approaches to accelerate uncertainty quantification

We are interested in computing uncertainty in the total ice mass loss, our Quantity of Interest (Qol),
due to the uncertainty in the basal friction.

We assume that the basal friction distribution is lognormal, centered on the value

obtained during optimization:

2 12

/ \

variance correlation length

B = exp(y), where y ~N (1og(Bopo), k), and k(x1,%;) = o exp (—L220)

Computing the uncertainty requires a huge number of solution of the ice flow problem, for
different samples of the parameter g.

We present two approaches for reducing the cost:
> multi-fidelity
> neural network surrogates



Multi-fidelity Models

Ice thickness equation: @;fH +V-(uH) = fy

ice thickness accumulation/ablation

/\ Mono-Layer Higher-order (MOLHO) model  Solve FO with trial function

___ FEniCS
(prototyping)

I3 (two 2d PDEs) u=u(r,y) + uget(r,y) p(2)

o

=

S

> Shallow Shelf Approx. (SSA) ‘ - ~

T (2d PDE, for floating fast-flowing ice) -V (2#HD(U)) + pfu = —pgHVs
A=)

o

=

S Shallow Ice Approx. (SIA) 2A 0303

S ' — Py Py

)= (for grounded slow-flowing ice) u=— ( = H*|Vs|? + FH) Vs

FEniCS code, developed by C. Sockwell, M. Perego from an original implementation by D. Brinkerhoff



14 1 Multi-fidelity Approach (w/ John Jakeman and Tom Seidl)

We use approximate control variate (ACV) Monte Carlo which is a
generalization of Multi-level Monte Carlo (MLMC)

M M
thv —_ QUEU] + Z ﬂﬂ' (QE.E.:_] - Fﬂ':.E.:.I) = QU-ELI] + Z ﬂﬂ'ﬂﬂlbga.hzmz
=1 a=1
= 0o~ + 1A

n = —Cov[A, A" Cov [A, Qo]

Cov[A, A]!
y = 1 — Cov[A, Qg]" DL[[Q’U]] Cov [A, Op]

V[QAY] = yV[Qy]

We consider three different mesh resolutions and three different models: MOLHO, SSA, SIA.



5 I Focus on Humboldt glacier
(Humboldt is one of the largest glaciers in Greenland)

Observed grounding line
retreat from year 2000

Estimated basal friction

slippery

Courtesy of T. Hillebrand



Multi-fidelity Results (w/ J. Jakeman and T. Seidl)

We compare vanilla Monte Carlo approach, using the MOLHO model and the finest mesh (f,) with

Multi-Level Monte Carlo approach, using MOLHO model and three mesh resolutions

Approximate-Variate Monte-Carlo, which automatically select the MOLHO model with finest mesh, SSA model
on medium mesh (f;) and SSA using coarse mesh (f,). Note that no SIA model is chosen (as it should be!)

'..” —a—  ACVGMFB 9551 - 95510 955199
10784 "eel, —e~  MLMC ]
Sol e o MC 41 418 4181

/
- -
o bo

=
o)

S
=

=
e

Relative Estimator Variance
Percentage of Total Cost

102108 10Y T 99.544378  999.099220 9999584871
Target Cost Total Cost



7 1 Neural Network surrogates
(w/ Qizhi He, A. Howard, S. Panos, G. Karniadakis)

Thickness equation:

31;;{-|-V-(1;1H) :f,{{

ice thickness vertically avg. velocity =~ accumulation/ablation

Time discretization: /\

(n+1) v (n+1)y _ .
H_;’.? o Hg + v ' (ﬁ(’rr}—l) H(TL—}—l)) o F(n—}—l) V J(li[j ) — pg 11 QHn—i—l
At &} & H V- ughL ) =0 iIlQHnH
/Stokes equation maps the
—n+1 n+1 thickness and the basal
Ug = g(’B , H ) friction into the velocity




18 1 Neural Network surrogates
(w/ Qizhi He, A. Howard, S. Panos, G. Karniadakis)

The velocity solver is the most expensive part of the model.
|ldea: replace the velocity solve with a Deep Operator Network*

aytl =|g(8, H") | DeepONet

Instead of approximating functions, DeepONet approximate nonlinear continuous
operators.

The universal approximation theorem provides a strong mathematical foundation of
DeepONets

*Lu, L., Jin, P., Pang, G. et al. Learning nonlinear operators via DeepONet based on the universal approximation
theorem of operators. Nat Mach Intell 3, 218-229 (2021).



DeepONet architecture

Bi(x1,¥1)
Bi(x2,y2)

Bi(xXpm, Ym)

Hzn(xbh)
Hin(xz:h)

A\ 4

Hin(foyM)

A 4

Branch network

target

u (B, Hi')(x, y)

A 4

(x,y)

Trunk network

compare

G(Bi, H)(x,y)

Velocity and thickness data
are generated by the FEM ]
code, implemented in FEniCS

Input/Output:

Branch input size: (NgNr, 1,2M)
Trunk input size: (NgN7, M, 2)
Target size: (NgNp, M, 2)

]
Legend: |
M: size of spatial grid

Ng: number beta samples

Nr: number of time snapshots



DeepONet architecture
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code, implemented in FEniCS

Input/Output:
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Ng: number beta samples

Nr: number of time snapshots



DeepONet architecture
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Input/Output:

Branch input size: (NgNr, 1,2M)
Trunk input size: (NgN7, M, 2)
Target size: (NgNp, M, 2)
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Legend: |
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Nr: number of time snapshots



2 I Humboldt (basal friction samples)

Basal friction sampled from a log-normal distribution:

_ 2
B = exp(y), where y ~N (log(Bope), k), and k(xq, %) = o exp (_ L )

Workflow:

* Generated beta samples

» Generate thickness and velocity data
for different beta samples using Finite
Elements (FEM) code

* Train the DeepONet w/ velocity data

basal friction

basal_friction
500 1000 2000 5000 Te+d 2e+d 6.721e+04
LU LU T

|

29398401 50 oo 200 29396401 50 100 200
e CECOERRREERT IR PR L
|HH|H}HHH\H‘HH\HH‘ L] HI ‘ [l ‘ Ll

5000 letd  2e+d 6721404
||| HHH‘HHHH\‘ RN

_J.HH LU LU L

Basal friction samples



2 I Humboldt - SSA model (computing averaged velocity w/ DeepONets)

Hybrid: thickness solved w/ FEM calling the DeepONet
at each time step to compute velocity

sample B,

sample B4

FEM: thickness and velocity models solved with FEM
Left: Averaged velocity at T=100 yr for test beta samples
(NOT used for training)
- : 300
averaged velocity averaged velocity SSA Trammg data: {ﬁl i=20
it o ] i
- = testing
- 104 Training MSE: 2.740e-06
8 Testing MSE: 2.219e-06
= Testing relative Loss: 1.136e-03
= Training relative Loss: 0.744e-03
107°
averaged velocity averaged velocity 10

i a2sset2 0 500 1000 1500 2000 2500 3000
—
o epoch (x100)




24 1 Humboldt - SSA model

(relative error as a function of time for different data)

Hyp - Heglly / IIH M,

01 I T
— 1, . .
0.09 —ﬂ: Setting:
By
0.08 |-| =513 # training beta samples: 280
_f;” #epochs: 300,000
007" o 4 layers of width W: 700
|| — 3y time snapshots: 1, 2, ..., 100
0.06 —_—
0.05 |- bro
ice thickness (FEM)
0.04 -
0.03
0.02 +
0.01
O | 1
0 50 100 150

time [yr]



s I Humboldt - SSA model (glacier mass loss)

Glacier mass change in gigatons, FEM model Glacier mass change in gigatons, Hybrid model
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Fast evaluation of forward model will enable the quantification of uncertainty on of sea level rise



