
Sandia National Laboratories is a multimission

laboratory managed and operated by National 

Technology & Engineering Solutions of Sandia, 

LLC, a wholly owned subsidiary of Honeywell 

International Inc., for the U.S. Department of 

Energy’s National Nuclear Security 

Administration under contract DE-NA0003525.

Advances in Computing Probabilistic 

Projections of Sea Level Rise Due to 

Ice-sheet Mass Loss

K.  L iegeo i s,  J.  Jakeman ,  T.  Se id l  (Sand ia  Nat iona l  Labs )
Q.  He (Un iver s i t y  o f  Minnesota )
T.  Hi l l eb rand ,  M.  Hoffman ,  S.  Pr i ce  (Los  A lamos  Nat iona l  Lab )

Main  c o l l a bo ra t o r s :

1

Mauro Perego

SAND2022-7804CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.



Talk Outline2

• Brief motivation and introduction to ice sheet models

• Ice sheet initialization  (ProSPect/FASTMath)

• Approaches to speed up the uncertainty quantification

o Multifidelity approach for uncertainty quantification (ProSPect/FASTMath)

o Neural Network surrogate to accelerate simulations (PhILMs/ProSPect)

Supported by US DOE Office of  Science projects:
 ProSPect :  Probabi l i s t i c  Sea -Level  Project ions  f rom ice  sheets  and  Earth  System Model s  

 FASTMath :  F rameworks ,  A lgor i thms  and  Sca lab le  Technolog ies  for  Mathemat ics

 Ph ILMs :  Phys i c s  In formed Learn ing  Mach ines



from http://www.climate.be

Perito Moreno glacier front

• Modeling ice sheets (Greenland and Antarctica) dynamics is essential to provide estimates for 

sea-level rise in next decades to centuries.

• Ice behaves like a very viscous shear-thinning fluid (similar to lava flow) driven by gravity. 

• Several unknown or poorly known parameters (e.g. basal friction, bed topography) 

and processes (calving laws, basal hydrology)

Brief Motivation an basic physics



ice velocity

gravit. acceleration

Model: Ice velocity equations

In this work we use a simplification of  Stokes equations, called First Order equations, obtained 

by scaling arguments given the shallow nature of  the ice sheets and using hydrostatic pressure.

Stokes equations:

Stress tensor:

Ice viscosity (dependent on temperature): 



Model: Ice velocity equations

bed

Stokes equations:

Sliding boundary condition at ice bed:

Free slip:

No slip:



First Order (FO) model  
(3D elliptic PDE) 

Shallow Shelf Approx. (SSA) 

(2d PDE, for floating fast-flowing ice)

Shallow Ice Approx. (SIA)
(for grounded slow-flowing ice)

Mono-Layer Higher-order (MOLHO) model
(two 2d PDEs)   

upper surface 

Solve FO with trial function
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membrane stress tensor 

Stokes equations are typically simplified exploiting the shallow nature of the ice sheets 

and using hydrostatic pressure.

Hierarchy of approximations of Stokes equations

FEniCS

(prototyping)

MALI

(production)
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Heat equation (for cold ice):

conductivity
dissipation

heating

geothermal 

heat flux
melting

rate

frictional 

heating

temperature 

flux

heat capacity

Boundary condition at the ice bed 

(includes melting and refreezing):

In this work we use a enthalpy formulation that accounts for temperate ice as well.

Model:Temperature equation



Software: MPAS-Albany Land Ice model (MALI)8

MPAS (Model for Prediction Across Scales): Fortran, finite volumes library, conservative 

Lagrangian schemes for advecting tracers (evolution of ice thickness)

Albany Land Ice: C++ finite element library built on top of Trilinos achieving performance 

portability through Kokkos programming model. Provides large scale PDE constrained 

optimization capabilities

References:
Hoffman, et al. GMD, 2018

Tuminaro, Perego, Tezaur, Salinger, Price, SISC, 2016.

Tezaur, Perego, Salinger, Tuminaro, Price, Hoffman, GMD, 2015

Perego, Price, Stadler, JGR, 2014

ALGORITHM SOFTWARE TOOLS

Linear Finite Elements on tets/prisms Albany Land Ice

Optimization ROL

Nonlinear solver (Newton method) NOX

Krylov linear solvers/Prec Belos/MueLu, Belos/FROSch

Automatic differentiation Sacado

FE mesh

(vertically extruded)
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Goal: Find the initial/present-day thermo-mechanical state of  the ice sheet and estimate the 

unknown/poorly known model parameters, by matching observations

Ice sheet initialization
(w/ K. Liegeois, T. Hillebrand, M. Hoffman and S. Price)

min
𝛽

𝒥 𝛽 = න
Ω

|𝑢 − 𝑢𝑜𝑏𝑠|
2

𝜎2
+ 𝑅(𝛽)

Approach: PDE-constrained optimization

Find basal friction coefficient b that minimizes the 

mismatch with surface velocity:

Subject to the coupled velocity/temperature problem

Software Requirements

• Large Scale optimization library (ROL), featuring gradient-based methods (ROL)

• Computation of  gradients of  the PDE residual and the loss functional w.r.t. the solution and 

the parameters. Automatic Differentiation is crucial for complex physics

• Faster, more robust methods available using Hessian (second derivatives)

unknown sliding

parameter 𝛽



10 Ice sheet initialization
Hessian computation using automatic differentiation (using Sacado package) 

Hessian of  residual 𝒇 dotted with the 

Lagrange multiplier 𝝀 in the direction 𝒗:

𝜕𝒖𝒑(𝝀
𝑇𝒇(𝒖, 𝒑)) 𝒗,𝜕𝒖𝒖(𝝀

𝑇𝒇(𝒖, 𝒑)) 𝒗,

𝜕𝒑𝒑(𝝀
𝑇𝒇(𝒖, 𝒑)) 𝒗𝜕𝒑𝒖(𝝀

𝑇𝒇(𝒖, 𝒑)) 𝒗,

Computed w/ automatic differentiation, 

differentiating twice, based on the formula:
𝜕𝒑𝒑 𝒥 𝒑 𝒗 = 𝜕𝑟 𝜕𝒑 𝒥 𝒑 + 𝑟 𝒗 ቚ

𝑟=0

We also build the sparse matrix 𝐻𝒑𝒑 = 𝜕𝒑𝒑 𝒥, efficiently computed using coloring, seeding and performing 

mat-vec products.

𝐻𝒑𝒑 is  used to define a Hessian-based vector-product for the Optimization package ROL instead of  the 

Euclidean dot-product, leading to improved convergence of  the optimization algorithms.

Newton-Krylov optimization methods require Hessian mat-vec products:

work by

Kim Liegeois
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observed ice speed modeled basal frictionmodeled ice speed modeled temperature

Thermo-mechanical initialization of Greenland ice sheet

Hessian based 

dot-product led 

to 5x speed-up

300K parameters, 14M unknowns. Initialization: ~10 hours on 2k nodes on NERSC Cori (Haswell), 

The optimization is constrained by the coupled velocity-temperature solvers. Most large scale-ice sheets codes constrain the 

optimization only with the velocity solver, which results in a temperature field that is not consistent with the velocity



12 Approaches to accelerate uncertainty quantification

Computing the uncertainty requires a huge number of solution of the ice flow problem, for 

different samples of the parameter 𝛽. 

We present two approaches for reducing the cost:

 multi-fidelity

 neural network surrogates

We are interested in computing uncertainty in the total ice mass loss, our Quantity of Interest (QoI),

due to the uncertainty in the basal friction.  

We assume that the basal friction distribution is lognormal, centered on the value

obtained during optimization:

𝛽 = exp 𝛾 , where 𝛾 ~𝒩 log(βopt), 𝑘 , and 𝑘 𝒙𝟏, 𝒙𝟐 = 𝜎 exp −
𝒙𝟏−𝒙𝟐

2

2 𝑙2

variance correlation length



Shallow Shelf Approx. (SSA) 

(2d PDE, for floating fast-flowing ice)

Shallow Ice Approx. (SIA)
(for grounded slow-flowing ice)

Mono-Layer Higher-order (MOLHO) model
(two 2d PDEs)   
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Multi-fidelity Models

FEniCS

(prototyping)

FEniCS code, developed by C. Sockwell, M. Perego from an original implementation by D. Brinkerhoff

accumulation/ablationice thickness

Solve FO with trial function

Ice thickness equation:



Multi-fidelity Approach (w/ John Jakeman and Tom Seidl)14

𝑉 𝑄ACV = 𝛾𝕍[𝑄0]

We use approximate control variate (ACV) Monte Carlo which is a 

generalization of Multi-level Monte Carlo (MLMC)

We consider three different mesh resolutions and three different models: MOLHO, SSA, SIA.



Focus on Humboldt glacier
(Humboldt is one of the largest glaciers in Greenland)

15

Observed grounding line 

retreat from year 2000

Estimated basal friction

Courtesy of T. Hillebrand



Multi-fidelity Results (w/ J. Jakeman and T. Seidl)

We compare vanilla Monte Carlo approach, using the MOLHO model and the finest mesh (𝑓0) with

Multi-Level Monte Carlo approach, using MOLHO model and three mesh resolutions

Approximate-Variate Monte-Carlo, which automatically select the MOLHO model with finest mesh, SSA model 

on medium mesh (𝑓1) and SSA using coarse mesh (𝑓2). Note that no SIA model is chosen (as it should be!)
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Thickness equation:

vertically avg. velocity accumulation/ablation

Neural Network surrogates 
(w/ Qizhi He, A. Howard, S. Panos, G. Karniadakis)

ice thickness

Stokes equation maps the 

thickness and the basal 

friction into the velocity

Time discretization:
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The velocity solver is the most expensive part of the model.

Idea: replace the velocity solve with a Deep Operator Network*

DeepONet

*Lu, L., Jin, P., Pang, G. et al. Learning nonlinear operators via DeepONet based on the universal approximation 

theorem of operators. Nat Mach Intell 3, 218–229 (2021).

Instead of approximating functions, DeepONet approximate nonlinear continuous 

operators.

The universal approximation theorem provides a strong mathematical foundation of  

DeepONets

Neural Network surrogates 
(w/ Qizhi He, A. Howard, S. Panos, G. Karniadakis)
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DeepONet architecture 

Legend:

𝑀: size of spatial grid

𝑁𝛽: number beta samples

𝑁𝑇: number of time snapshots

Input/Output: 

Branch input size: (𝑁𝛽𝑁𝑇 , 1, 𝟐𝑴)

Trunk input size: (𝑁𝛽𝑁𝑇, 𝑀, 𝟐)

Target size: (𝑁𝛽𝑁𝑇, 𝑀, 𝟐)

Branch network
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DeepONet architecture 

Legend:

𝑀: size of spatial grid

𝑁𝛽: number beta samples

𝑁𝑇: number of time snapshots

Input/Output: 

Branch input size: (𝑁𝛽𝑁𝑇 , 1, 𝟐𝑴)

Trunk input size: (𝑁𝛽𝑁𝑇, 𝑀, 𝟐)

Target size: (𝑁𝛽𝑁𝑇, 𝑀, 𝟐)

Branch network
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DeepONet architecture 

Legend:

𝑀: size of spatial grid

𝑁𝛽: number beta samples

𝑁𝑇: number of time snapshots

Input/Output: 

Branch input size: (𝑁𝛽𝑁𝑇 , 1, 𝟐𝑴)

Trunk input size: (𝑁𝛽𝑁𝑇, 𝑀, 𝟐)

Target size: (𝑁𝛽𝑁𝑇, 𝑀, 𝟐)

Branch network

Trunk network

Velocity and thickness data 

are generated by the FEM 

code, implemented in FEniCS

(𝑥, 𝑦)



Humboldt (basal friction samples)22

sample 𝛽0 sample 𝛽1

Basal friction sampled from a log-normal distribution:

Basal friction samples

Workflow:

• Generated beta samples

• Generate thickness and velocity data 

for different beta samples using Finite 

Elements (FEM) code 

• Train the DeepONet w/ velocity data

𝛽 = exp 𝛾 , where 𝛾 ~𝒩 log(βopt), 𝑘 , and 𝑘 𝒙𝟏, 𝒙𝟐 = 𝜎 exp −
𝒙𝟏−𝒙𝟐

2

2 𝑙2



23 Humboldt – SSA model (computing averaged velocity w/ DeepONets)

sa
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 𝜷
𝟎

Hybrid FEM

Hybrid FEM

sa
m

p
le

 𝜷
𝟏

Hybrid: thickness solved w/ FEM calling the DeepONet

at each time step to compute velocity

FEM: thickness and velocity models solved with FEM

averaged velocity averaged velocity

averaged velocityaveraged velocity

Left: Averaged velocity at T=100 yr for test beta samples 

(NOT used for training)
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ice thickness (FEM)

Humboldt – SSA model
(relative error as a function of time for different data)

Setting:

# training beta samples: 280

#epochs: 300,000

4 layers of width W: 700

time snapshots: 1, 2, …, 100

extrapolation



25 Humboldt – SSA model (glacier mass loss)

Fast evaluation of forward model will enable the quantification of uncertainty on of sea level rise

Glacier mass change in gigatons, Hybrid modelGlacier mass change in gigatons, FEM model

extrapolation extrapolation


