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z‘ 2021

« Working virtually created many challenges.

Dear Boss-
Cant do any work today. (at on computer.



3 ‘ 2022

« But returning to the office is also creating challenges.

Dear Boss-
Can’t come to work today. (at on pants-.



4 | Outline

* The nonlocal length scale affects all aspects of material stability.
 Failure kinetics: “Imaginary wave speeds” are useful.

- Material and structural instability are related, leading to models for:
 Kink bands in composites.
* Self-shaping of fibers.

 Fracture nucleation is a type of material instability.

* Phase boundaries contain an unstable core.



s | Some concepts of stability (local theory)

- Real wave speeds (Hadamard stability, strong ellipticity)
* Minimum potential energy

» Bifurcations

» Well-posedness

* Discontinuity in gradient (Ordinary ellipticity)



¢ I Material vs. structural stability (local theory)

- Material instability:
« Happens at a material point, triggered by local conditions
* Not directly related to the geometry of the body
« Example: Adiabatic shear band

« Structural instability:
* Happens to the entire body collectively
« Example: Buckling of a beam

Adiabatic shear band in aluminum Buckling of a column
image: Baxevanis et al., image: Klimchik
www.ima.umn.edu/materials/2008- www.researchgate.net/figure/Examples-of-buckling-in-

2009/SP7.13-31.09/8186/ima.pdf column-www-civildb-www-highline_fig11_281183936



7 | Peridynamics background

e Peridynamic momentum balance in 3D:

p(x)u(x,t) = f f(q,x,t) dq + b(x,t) VxeR, t>0.

x

e f is the pairwise bond force density of the bond from q to x.

e Hx is the family of x, which is a ball centered at x with radius § (the
horizon).



s | Bond-based materials

e Later we will consider 3D deformations and bending of 1D-like structures.
e But for now, set
u = uej. M = ey, f=0C(lg—x|)seq

where (' is a scalar function of the bond length called the micromodulus
or kernel.

e [he momentum balance is now

)
pii(z, t) = f (&) (ule + &) — ulx)) de

-5
(similar to Kunin's theory (1983)).

e (' must satisfy

Initial

Time t



o I An intuitive notion of stability... and a mysterious tensor

e Equilibrium:

L(x)+b(x) =0, L(x)= / C(€)(ulx + &) — u(x)) d¢

xX

where L is the force density on x, Af/

i 11 - . .
e Suppose we ‘carve out” a small volume surrounding a point x and displace
it by up.

e The net force density on the small volume is:

L=-Pu, P _/ C(¢) d¢.

where P is the single point response tensor.

e Single point stability: If Comparable statement in the local theory:

Cijkl€ij €kl > 0 Ve

o

ug - (Pug) > 0 Vug

then the particle always gets pushed back toward where it started. Oth-
erwise x can fly off to oo.



0 I Simplify further to 1D, linear microelastic
e Later we will consider 3D deformations and bending of 1D-like structures.

e But for now, set

u = ueq, M = eq, f=C(|lg— z|)ser

where C' is a scalar function of bond length called the micromodulus or C (&)
N
kernel.

e [ he momentum balance is now

5 o)
piia,0) = [ ) (ulw+€) - ulw)) de | 7 > ¢

(similar to Kunin's theory (1983)).

e (' must satisfy

C(_E) — 0(5) V&" Some possible micromodulus curves




11 | Linear waves: Dispersion curves

e Assume a wave of the form

ul[:t:,ﬁ) _ Aﬂi{km—mﬁ]

where A—amplitude, k=wavenumber, w=frequency.

e Equation of motion:

&
pii(z, £) = [_ C©)ula+6,8) = ulz, 1) de /

e leads to

—pt = [ i o) [* -

e Therefore the dispersion relation is

w{k}:\/P—G—‘{k): i

2l

where C(k) is the Fourier transform of C(¢).

1} d¢

— C(0)

~—

pw? (k)

N

y

\

N

Some possible dispersion curves

We’ve seen this before!



12 | Dispersion and material stability

» Purple and red materials have “imaginary wave speeds” ¢ = w/k.
« Red: all wavenumbers are unstable.
* Purple: only some wavenumbers are unstable.

C©) pw? (k)

N

Stable

Unstable
/

Micromodulus curves ) )
Dispersion curves




13 | Example: A material with a narrow band of unstable wavenumbers

Material model Dispersion curve

Stable

Micromodulus C (§)
o

o
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1
1
1
1
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)

Frequency squared w? (k)

Unstable

Unstable wavelength
/ i S~ Wavelength = 0.5

0 0.5 1.0 1.5 0 10 20
Bond length ¢ Wave number k




14 I This material is stable in some geometries but unstable in others

u(x,t)
%////A ' 97/////%
i Displacement vs. Position, time= 0.000000
8 r Long bar (length = 2.0) —
5 =
4 il
2 =1

-2 -
—4 =
—B -
_8 Unstable wavelength A
e 1 ﬂ 1 1 1 1 1 1 1 1
-1.0 -0.86 -0.2 0.2 0

Fosition

VIDEOS

Displacement vs. Position, time= 0.000000

Short bar (length = 1.0)

Unstable wavelength

Fosition



15

Minimum potential energy is related to wave speed

e Total potential energy in a bounded body:

@u%//w(xﬂx)dx’dx—l—fb-udx

where w is the bond energy (micropotential).

e Consider a set of deformations parameterized by ¢:
u=ug+ £V
where v is a vector field.

e Stationary o:
dé

de
leads to the equilibrium equation that is satisfied by ug

0 Vv

/f(x’,x) dx’+b =0 Vx.



16 I Minimum potential energy is related to wave speed, ctd.

e Now require ® to be a minimum as well as stationary:

d*®

1e2 > 0

for all v except rigid motions.

e Leads to

//("I_V)'C('ﬁ)(v’—v) dx'dx >0 Vv

where



17 I Minimum energy implies real wave speeds

e Suppose ¢ is minimized by ug. Let v be a standing wave (eigenmode,
vibrational mode).

feto v ae s v -o
e Multiply through by v and integrate over x:
//V-C(E’)(V’—v) dx’ dx—l—pr/Vavdx—U.
e After some manipulations:

[ [/ =)@ —v) ax ax—2p? [v-vax—o.

e But we already know that the [ [ is positive.

e Conclude w? > 0. So the wave speeds are real.



18 | Failure kinetics: How much time does it take for material to fail?

« Example: Stretching of a bar with an unstable material model. N ol simulafi |
- Bar is stretched from the ends at a constant rate. umerical simulation results
» The bond force vs. strain curve has a descending branch.

* What happens? _
Q
o
Strain rate O
—Hll B © '.< %
N 7 -
Weak spot o , Failure
=  time
T . N |
Bond force f |
A Material model =
I i
o 1
© :
© !
£ |
d o :
L S0 Bond strain s ) :
Time




19 | Failure kinetics: Unstable waveforms grow exponentially but at a
finite rate

Initial data in the infinite bar:

u(x,0) = Acoskz, w(z,0) =0 V.
o If w? [kjl > 0:

u(x, ) = %[CDE{F:::: — w(k)t) + cos(kz + w(k)t)].

o If w?(k) <O
u(x,t) = Acos(kx) cosh(A(k)t)

where

AME) = v —w? real.

e Ais called the blow-up rate.

=V



20 I How much time does it take for an unstable waveform to grow!

Suppose the material “fails” when the local strain u, exceeds some given value €, .

Peridynamic material model

Bond force f

/

\

N

Bond
strain s

N A —— AN

Strain

Growth of a perturbation for different wavelengths A

0.2




,; | Stretching of a bar: Compute the time to failure

t ~ min 50 81+ ! lo
fail ~ T(]j o )\oo g
Strain rate
—ll
N

Weak spot
T

2(80 — 81)
hg(Sl + ?”0/)\00)

Bond fosse f

Bond

strain s

~

R
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22 ‘ Stretching of a bar: We arrive at a macroscopic rate effect

|t takes time for the bar to fail even after some bonds have crossed the peak.

« Meanwhile, the remote strain is still increasing.

» Result is that higher strain rates lead to higher macroscopic failure strain

€fail = Tolfail
« Many real materials show a similar trend.

Remote strain at time of failure
0.25 - . :
—&— HNUMERICAL
| -—8-- ANALYTIC 7
::3' 0.20 m-g-g-a-a
by ,j"" i
- ¢
£ 015
] e
5 g 1
& 0.10 s 1
A
p i
;ﬁ-_’.
- |
0.05 - .
0.001 0.01 0.1 1 10
Strain rate 1y

Strength

Rate effect on the strength of polyethylene
(Yu, Lu, & Cai, 2013)

2.0~

1.6- }L

.......

—
=

104 o

log;o(strain rate)

* SS, Journal of Peridynamics & Nonlocal Modeling (2021)




23 | Instability due to internal loading in a fiber

« String made of microelastic material

» Constant long-range forces between material points
» Allow rotations (unlike true 1D)

« Study transverse waves and their stability

Area a

s

Fiber

Xy 4 Wave velocity IV Fiber |




24 | Internal loading in a fiber accounting for bond rotations

e Recall the 3D momentum balance:

p(x)u(x,t) = / f(q,x,t) dq + b(x, t) Vxe R, t>0.

x

e Allow for bond rotation.

f(q,x,t) = (C(§)s + fi(§))M

where s is the bond strain and f; is the prescibed internal force density in

the bond &.

e Assume that f; is self-equilibrated (no net axial stress).

Internal loading as a function

Af;:

of bond length

T~

N

v




25 | Transverse waves

Assume

pw’ = [— fi(6)¢’ dﬁ] k.

Long bonds in compression = w is real (stable).

Long bonds in tension = w is imaginary (unstable).

A

fi

Stable

»

¥

Unstable

v

v



26 | If a straight fiber is unstable, what does equilibrium look like?

We can compute* the curvature of a fiber in equilibrium.

Result:

Straight is
stable

+ Curvature

Straight is
unstable

* SS, “Self-induced curvature in an internally loading peridynamic fiber,” technical report SAND2022-5539

=

 fi

Slope =

v



27 | Emu simulation of an internally loaded fiber

 Internal loading is turned on suddenly.

VIDEO

e e s R e

Initial

w

Colors show strain
(red = 0.01)



28 | Homogenized model of many fibers:
Kink bands in a fiber-reinforced composite

Fibers in a matrix
Remote loading in fibers is g,
Bonds can be either stiff or soft

Transverse wave

e [he dispersion relation for transverse waves turns out to be
2 8 ]{'2
pw” = (o0 + p(k))k
where (k) characterizes the matrix shear response.

e If the remote loading is compressive (09 < 0) then w can be imaginary.



29 ‘ Emu simulation of instability in compression in a composite

« Bonds in the horizontal direction are more stiff than the others.
» Anisotropic, microelastic material model.
« There is no damage (bond breakage) in the peridynamic model.

c
Q
© C :
@ 9mpresswe
S failure
X 1
£ 1
© J
(U -
o
4 1
.. Final | 1 1 1 1 1 1 . : .. : : .
Initial Colors show displacement magnitude Time :nkb;n;nacommprost -e g
i i i

Image: S.PH. Skovsgard, thesis, 2019



30 I Crack nucleation as a material instability

* A body is initially continuous.
« At some later time there is a discontinuity.
« What mathematical conditions need to exist for this to happen?
» This question is not addressed by fracture mechanics, which assumes a pre-existing defect.

» SS, O. Weckner, E. Askari & F. Bobaru, Int. J. Fracture (2010)
* R.P. Lipton, R.B. Lehoucq & PK. Jha, J. Peridynamics & Nonlocal Modeling (2019)



3

. | Perturbation by a jump

« Suppose a small virtual discontinuity is inserted into a body under load.

» Does the discontinuity grow or close up?
« Analyze the evolution of the jJump [ul].

G —_—
4 — —_—
G —_—




3

, | Perturbation by a jump

e From the momentum balance, find that

olil =~ ( (@) i€ ) [u] = ~Plul.

The gap closes up if
[i] - [u] < 0.

If
ug - (Pug) >0 Yug £ 0

then a crack cannot form.
Let p1, po, p3 be the eigenvalues of P (which is symmetric).

Stability index:
Z = min{p1, p2, p3}.

If Z <0, a crack can nucleate. The eigenvector gives the gap displace-
ment.

The orientation of the crack comes from the underlying stress field.
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34 ‘ A nonlocal model of fracture can be well-posed (!)

* Nonconvex elastic peridynamic material.

» Points entering the unstable branch lead to creation of a jump Bond force f
in displacement. 1

« This discontinuity can grow through the body.

» As it grows, it consumes a definite amount of potential energy
per unit crack area (Griffith crack).

* The whole problem can be well-posed.

» These results hold for both static and dynamic cases.

»

Bond st?ain S

R.P. Lipton, J. Elasticity (2014)

R.P. Lipton, J. Elasticity (2016)

PK. Jha & R.P. Lipton, SIAM J. Numerical Analysis (2018)

R. Lipton, E. Said & PK. Jha - Handbook of nonlocal continuum mechanics for materials and structures (2018)
R.P. Lipton, R.B. Lehoucq & PK. Jha, J. Peridynamics & Nonlocal Modeling (2019)

PK. Jha & R.P. Lipton, Computer Methods in Applied Mechanics & Engineering (2019)

R.P. Lipton & PK. Jha, Nonlinear Differential Equations and Applications (2021)



35 | Mechanically induced phase transformation

Bond force j‘!

Here’s another type of nonconvex microelastic material:

Low strain phase High strain phase
o / = o
/

Phase boundary (thickness = §)

> Bond strain s

« There are multiple bond strains for the same bond force.
« This creates the possibility of multiple phases in a bar in equilibrium.
« Within the phase boundary, there are always some bonds in the unstable part of the material model.

» K. Dayal & K. Bhattacharya. J. Mechanics & Physics of Solids (2006).



36 I VWhat conditions permit coexistent phases?

* In equilibrium, energy conservation implies
Wt—W-=(et—¢7)o

which is formally the same as in the local theory.
» Compare Weierstrass corner condition, Maxwell condition in the calculus of variations.

Phase boundary (thickness = §)



In peridynamics, a phase boundary contains potential energy

The system evolves over time to reduce the total surface area of phase boundaries.

We can use this to simulate microstructure evolution.

4

Bond force
, density f

n

€o

»

Bond strain s

Microstructure evolution in a plate with initial strain g
Colors show bond strain

\ rA'ﬁ;\A\-r/ ‘\/(
J \V.\/;”

XL/




38 | Microstructure evolution over time

VIDEO

Microstructure evolution in a plate with initial strain ¢,
Colors show bond strain




9 | Summary

* Nonlocality changes everything about material stability.
*  We can do meaningful continuum mechanics within an unstable material.
* We can use this to simulate real phenomena:

» Rate effect on bulk material strength

* Fracture nucleation, Griffith criterion

« Compressive failure modes in composites

» Microstructure evolution




