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Atmospheric Pressure Plasmas are | Inorder to account for all the relevant physics we Il. Large fluctuations in the ion temperature
used for multiple applications can use Molecular Dynamics (MD) Simulations

e Operational Simplicity (no vacuum system required) and low
running cost

e Promising for Inactivation of pathogens in medicine,
applications in food industry, agriculture, water purification,
atmosphere decarbonization, among others.
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e LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) " — xw, | K2 Neutral atoms total Kinetic Energy

e Electrons were considered as a non interacting background neutralizing — eony | EqiTotal Energy
species and are not included

e Partially ionized Ar plasma, T=293 K, P =1 atm.

e Short (neutral-neutral), Medium (ion - neutral) and Large (ion - ion) 2-
range interactions were included.

Oscillations in ions positions after DIH

— Exchange between K_ and P_

— ion Temperature fluctuations due to the strong
coupling between ions (I'. > 1 — Avg. Potential
Energy > Avg. Kinetic Energy)
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e Highly non-equilibrium plasma state (Te>>Ti) which promotes | o 3D periodic box of length ~ 25 a. RS Tlaa ) )lax e
chemical reactions L. B e
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