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Mechanical Behavior of Energetics:  A Modeling Challenge2

 Why care about mechanical behavior? –Safety is key

 Precursor to hot spot formation and High Explosive Violent Reaction (HEVR) events

 What is behavior of a mechanically deformed explosive exposed to other 
environments?—must first be able to predict the deformed state

Image: courtesy Marcia Cooper



PBX Mechanical Behavior:  A Modeling Challenge3

 PBX Mechanical behavior is complex:
 Strain rate dependent
 Temperature dependent
 Pressure dependence
 Tension-Compression Asymmetry
 Many inelastic deformation mechanisms:  Viscoelasticity (binders), Cracking (intra- 

and inter-granular), Porosity opening, dislocation slip, twinning (some energetic 
crystals)

Plastic Bonded Explosive [Rae, 2002]

12.54 mm

Image: courtesy Marcia 
Cooper

How to represent various 
inelastic mechanisms in a 

macroscale model?



Hypothesized Mesoscale Deformation Mechanisms

 Simplified view of mesoscale processes and macroscale interpretation
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Viscoelasticity 
(binder)

Statistical Crack 
Mechanics (SCRAM)

Pressure-Dependent 
Plasticity



ViscoPlastic-ViscoSCRAM Model Theory 

 Kinematics:
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 SCRAM Damage  Drucker-Prager 
Plasticity

 Viscoelasticity

Prony series of shear 
moduli and relaxation 

times



Uniaxial Compression

 Rate Dependence from Viscoelasticity and SCRAM mechanisms
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Increasing 

Increasing 

While increasing strain rate increases stiffness from the viscoelasticity, the 
damage evolution is reduced with increasing strain rate. Why?



Uniaxial Compression
 Plasticity is a second inelastic mechanism, which is only active at strain rates 
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Increasing 

Plasticity limits stress development in the material which reduces the rate of 
damage and also produces positive volume strain (dilatation)



Intermediate Strain Rate Impact88

Plastic bonded 
explosive sample

4.6 m/s 
impact 
velocity

12.54 
mm

Positive volume strain:  
estimated at ~4.6%



9 Evolution of SCRAM Damage and Plasticity
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 Both SCRAM damage and plasticity are active 
simultaneously

 Final damage state is the same, but different 
evolution behavior

 Plastic flow occurs during stress wave 
oscillations



10 Evolution of SCRAM Damage and Plasticity

Plastic bonded 
explosive sample

4.6 m/s 
impact 
velocity
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11 Evolution of SCRAM Damage and Plasticity

Axial Stress
(MPa)

Damage
Parameter

Equivalent 
Plastic Strain



Plasticity allows predictions for net dilatation
 Net dilatation only predicted from model with plasticity

 Volume strain estimated from image analysis of pre- and post-mortem SHPB sample 
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Positive volume strain: estimated ~4.6%

12.54 mm



Meshfree Mesoscale Models

Give insight to mechanical deformation and damage mechanisms under 
many different stress states
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Bonded Particle Models (BPMs)14

PBX-like composite



15 Identifying yield surface shape to inform continuum models
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Earlier onset 
of plasticity

 Many possible loading paths, all 
have unique failure stress. 
Map out yield surfaces, often 
assumed to have simple shape (e.g. 
Drucker-Prager)

 Testing how changes in binder’s 
material properties impact yield 
surface
 better understanding of 

inelastic yielding for continuum 
models
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16 Extending framework to capture damage and crack percolation
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Final percolating crack 
in binder in pure shear

Simulations allow us to identify yield while simultaneously 
tracking crack growth in binder & quantifying damage

Complete spatial-temporal history of damage provides a new 
perspective on complex mechanical problems
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See emergence of damaged modulus by 
varying loading geometry



 Multifaceted effort to understand and model mechanical behavior: 
 ViscoPlastic-ViscoSCRAM macroscale constitutive (strength) model with 3 key features:  

Viscoelasticity + SCRAM damage + viscoplasticity
 Plasticity is an additional inelastic mechanism that limits stress development in the 

material which reduces the rate of damage and also produces positive volume strain 
(dilatation)

 Improved agreement with intermediate strain rate SHPB test compared to model without 
plasticity

 Open Research Questions:
 How best to capture coupling between the various deformation mechanisms (cracking, 

porosity opening, etc) in the macroscale model?  
 Best practices for calibration?
 Material failure criterion—F(damage), F(plasticity), F(both)??
 Mesoscale bonded particle models provide insight to deformation mechanisms, shape of 

yield surface, etc.

17 Conclusions & Ongoing Work
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Thank You!



Extra Slides
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ViscoPlastic-ViscoSCRAM Model Theory 20

 Solution Algorithm:


