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> | Mechanical Behavior of Energetics: A Modeling Challenge @!

» Why care about mechanical behavior? -Safety is key

» Precursor to hot spot formation and High Explosive Violent Reaction (HEVR) events
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Image: courtesy Marcia Cooper I
» What is behavior of a mechanically deformed explosive exposed to other |

environments?—must first be able to predict the deformed state



s | PBX Mechanical Behavior: A Modeling Challenge

» PBX Mechanical behavior is complex:
» Strain rate dependent
» Temperature dependent
» Pressure dependence
» Tension-Compression Asymmetry

» Many inelastic deformation mechanisms: Viscoelasticity (binders), Cracking (intra-
and inter-granular), Porosity opening, dislocation slip, twinning (some energetic
crystals)

How to represent various
inelastic mechanisms in a
macroscale model?
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4 | Hypothesized Mesoscale Deformation Mechanisms

» Simplified view of mesoscale processes and macroscale interpretation

Cracks
(Intra and/or Inter-Crystalline)

Undeformed Crystal Rotation + Pore Opening
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5 | ViscoPlastic-ViscoSCRAM Model Theory

» Kinematics:
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6 | Uniaxial Compression

» Rate Dependence from Viscoelasticity and SCRAM mechanisms
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While increasing strain rate increases stiffness from the viscoelasticity, the
damage evolution is reduced with increasing strain rate. Why? éa\
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7 1 Uniaxial Compression

> Plasticity is a second inelastic mechanism, which is only active at strain rates & < 1s~1!
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Plasticity limits stress development in the material which reduces the rate of
damage and also produces positive volume strain (dilatation)




: | Intermediate Strain Rate Impact
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Average Axial Stress o,. (MPa)

Evolution of SCRAM Damage and Plasticity

» Both SCRAM damage and plasticity are active
simultaneously Sample

Transmitter
bar

» Final damage state is the same, but different
evolution behavior

Incident bar
24 in

» Plastic flow occurs during stress wave
oscillations
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10 I Evolution of SCRAM Damage and Plasticity m
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1 1 Evolution of SCRAM Damage and Plasticity
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> | Plasticity allows predictions for net dilatation

» Net dilatation only predicted from model with plasticity

» Volume strain estimated from image analysis of pre- and post-mortem SHPB sample

Positive volume strain: estimated ~4.6%
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Meshfree Mesoscale Models

Give insight to mechanical deformation and damage mechanisms under
many different stress states
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.+ | Bonded Particle Models (BPMs)

» BPMs are minimalistic particle-based models for fragmentation —
ideal for studying trends/testing theories

> Very efficient, can simulate large systems, ~ 102 grains, at high
resolutions, ~ 10* particles/grain

»In BPMs, grain = collection of repulsive particles connected by
network of (typically) pairwise bonds

» Bonds break under specific criteria — e.g. stretch threshold

» Functional form of bond controls material properties:
moduli, fracture toughness, plasticity, viscoelasticity, ...

» Open-sourced models available in recently released LAMMPS

package

Grain consisting of ~ 10? particles

ADRD



s § ldentifying yield surface shape to inform continuum models

» Many possible loading paths, all
have unique failure stress. TXC Radial distance
Map out yield surfaces, often JJ stress
assumed to have simple shape (e.g. h
Drucker-Prager)

> Testing how changes in binder’s
material properties impact yield
surface
> Dbetter understanding of
inelastic yielding for continuum
models

Earlier onset
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16 | Extending framework to capture damage and crack percolation

Simulations allow us to identify yield while simultaneously
tracking crack growth in binder & quantifying damage

Complete spatial-temporal history of damage provides a new
perspective on complex mechanical problems

See emergence of damaged modulus by
varying loading geometry
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> Multifaceted effort to understand and model mechanical behavior:

» ViscoPlastic-ViscoSCRAM macroscale constitutive (strength) model with 3 key features:
Viscoelasticity + SCRAM damage + viscoplasticity

» Plasticity is an additional inelastic mechanism that limits stress development in the

material which reduces the rate of damage and also produces positive volume strain
(dilatation)

» Improved agreement with intermediate strain rate SHPB test compared to model without
plasticity

» Open Research Questions:

» How best to capture coupling between the various deformation mechanisms (cracking,
porosity opening, etc) in the macroscale model?

Best practices for calibration?
Material failure criterion—F(damage), F(plasticity), F(both)??

» Mesoscale bonded particle models provide insight to deformation mechanisms, shape of
yield surface, etc. I
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Thank You!
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20 | ViscoPlastic-ViscoSCRAM Model Theory

» Solution Algorithm:

(1) After converging at time ¢,, input:
Time and strain increments: Az, Ae
Stress state: . (T )p. S
Damage variable: ¢,
Functions of the damage variable: v, 6,, A,
History variable: €,

(2) Viscoelastic predictor:
Initialize plastic flow increment: Al =0
Compute: O'{fl from (37). (34) and (24)
Compute: 0, = o' R

n+l
P =
Compute: €,,, = €,

(3) Yield surface check:
IF f(0ys1. €0, . D,) > 0. THEN GOTO (4)
ELSE GOTO (5)
ENDIF

(4) Viscoplastic corrector:

Solve for {041, ef:H }. See Box 2 for return map algorithm.

(5) Damage variable, Maxwell stress, damage rate, and damage variable functions updates:
Update: ¢,y from (27)
Update: sfﬁl from (29)
Update: ¢4 from (7)
Update: ¢,y from (18)
Update: 6,4 from (19)

Update: A, from (20)




