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(Top) The third-generation insulator geometry consists of an extend 45 degree wedge along the
entire front face with a variable fillet to meet the anode, and a pyramidal construction about the
remaining edges. Fields are similar to the Stygar Geometry with the rear and side faces accessing
the flashover strength of a sloped insulator [3].

(Bottom) Visible light microscopy of an anode initiated flashover event on the third generation
insulator. Of particular importance, no aluminum wire was necessary to initiate the breakdown
near the center [3].
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Electric field along the vacuum-insulator interface (45◦
surface). Field inVacuum plotted in red; field in insulator
plotted in black. In keeping with [1] electric field
magnitude is normalized to Vapplied/Hgap; insulator Er
= 2.53. Radius is normalized to the width of the insulator
assuming the ATJ lies at 0. This is proportional to
distance from the ATJ, the complement of distance from
the CTJ [3].

Simulated Electric Fields

Improved design of a high-voltage
vacuum-insulator interface
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TTU Design with Improved
Diagnostic Accessibility[6]
Smaller insulator
• 4 cm x ~40 cm OD versus

5 cm x 10 cm x 4 cm
• Faster/cheaper turn-around
Smaller gap (0.6 cm versus 4.3 cm)
• 240 kV versus 2.2 MV

Design Philosophy
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Series of three (non-sequential) fast-gated ICCD camera images of light emission from the evolution of
anode-initiated surface flashover. Column 1 (left) early light is seen from the anode during the voltage

rise. Column 2 (center) light from the impedance collapse. Column 3 (right) light from after the
impedance collapse. Note the lack of cathode spots in 1,2. Bottom Row: Time integrated light [4].

Time Evolution of Flashover

Second-generation insulator. The 45 degree wedge
was extended to the entire front face. Flashover to
the rear continued to be an issue, however, use of a
aluminum wire simulating a defect in the insulator
geometry could be used to reliably initiate flashover
along the front surface. Path was prone to traverse

laterally along the sanding groves [3, 4].

First-generation insulator. Very high tangential
electric fields along the vertical surfaces are

believed to result in flashover along the side and
back surfaces. Flashover along the 45 degree
wedge was not observed. Rounding of the non-
critical edges was necessary to prevent flashover

along the respective boundaries [3].

Early Insulator Geometries

Anderson Model
(1) Intense electric field develops near the anode triple junction (ATJ) which results
in bulk breakdown of a thin (few um) surface layer. (2) Emitted electrons desorb
gas and result in the formation of a local plasma which conducts the anode potential
into the gap. (3) (Continues) until the anode potential is conducted across the gap
and the final breakdown occurs. [1]-[3]

Anode Initiated Flashover

• Large pulsed power machines are geometrically constrained.
- Predicting flashover is rooted in empirical models, not rigorous physics.
- Surface flashover threshold of insulators are much less than vacuum.
- Informs the minimum size of facilities and power limits of existing ones.

• Grow the body of evidence for anode initiated flashover
- Direct observations are limited in literature.
- The existing the model is very qualitative.

Motivation

Vacuum surface flashover imposes size requirements for large-scale pulsed power machines. Our
understanding of the subject imposes a hard barrier to the modernization and improvement of
existing infrastructure. Modern insulator configurations suppress cathode-initiated flashover and
requires anode-initiated flashover to be considered. This is achieved by mitigating the electric field
at the cathode at the expense of the anode field being several times higher. The mechanism of anode-
initiated flashover is of limited understanding but is believed to depend on the cascade growth of a
conducting plasma along the length of the insulator from the anode. In the case of pulsed, anode-
initiated flashover, experimental evidence suggests that charge is directly extracted from the
insulator resulting in the insulator taking on a net positive charge advancing the anode potential.
Along with accompanying gas desorption from the surface, the potential will then propagate from
the anode towards the cathode until the effective length of the gap is sufficiently reduced to support
flashover. A first-generation test fixture for direct localization and direct observation of vacuum
surface flashover is presented along with a discussion of the insight gained by the apparatus. A
review of limitations and challenges encountered is included along with a review of the second-
generation platform which is being developed.

SNL is managed and operated by NTESS under DOE NNSA contract DE-NA0003525.
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Selected images of flashover of the 1st gen.
HV feed through (positive polarity center).
The issue has been addressed, but special
care is taken to avoid and easily diagnose
the potential issue in the 2nd generation
design. Likewise the presence of the issue
is taken as indication of the existing system
being at or near its physical limits.

Oil-Filled Section PC Vacuum

Cathode (Center Negative)

- Drop-in replacement for original Marx load.

- Left portion is oil-filled with submerged peaking gap.

- Design optimized to avoid bulk breakdown of insulator under
electrostatic conditions.

- Integrated salt-water resistor for guaranteed minimum load.

- Field shaping at the anode and cathode triple junctions.

HV Feed Through

Refurbished Febetron Marx Generator

Generates a Negative High Voltage Pulse

30 kV Charge, 30 Stages (2 Stages per Element)

Simulated Pulse of 600 kV (2.5x to 3x Existing)

SPICE Model based on Allen et al [7].

Artist's Rendition

Model is not to Scale

Pulsed Power Source

Selected images of flashover across the insulating rods separating anode and cathode on the 1st
generation test fixture. This is a consequence of the increasingly high flashover resilience exhibited by
the 2nd- and 3rd (shown)- generation insulators. The issue can be mitigated, however, it is taken as
indication the existing setup is near its physical limits.

Current Viewing Resistor (CVR), Above retractable anode.

3rd Gen. Insulator

Diagnostic ports moved away from direct observation

Cathode is directly supported by HV feed through

Retractable Anode

Spring Loaded Cathode

Distributed Complexity
- Existing diagnostic ports on top and bottom
- CVR moved to retractable anode
- Spring load moved to cathode base plate
- Cathode easily replaceable/modifiable
- Supporting rods between anode and cathode
have been completely eliminated.

(Early Design Concept)

Improved Accessibility
- Approximately 2x Larger Dimensions
- (18 to 22)" Exterior dimension
- Existing diagnostic ports on top and bottom
- Ceramic Break moved to side of chamber.
- Lateral access for deflection diagnostics

Second Generation Chamber
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(Above) Cross-section of the first generation test fixture featuring an electrically excited anode,
and grounded cathode base plate [4].

(Below) Experimental test fixture with first-generation PMMA insulator. Left: front view
looking directly at the insulator wedge (slightly above the arrow). Right: profile view showing
the anode protrusion extended into the insulator bulk with the tip centered near the ATJ. The
arrow denotes the insulator width of 95mm (3.75 in) [3].

First Generation Fixture

Princeton Pi-MAX 4
• Intensified CCD
• Sub-500 ps gate

capable
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See [8] for spectroscopic measurements.
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