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 Brief review of known methods for classifying higher-order topological
phases

» Chiral-symmetric higher-order topological phases (HOTPs) in 2D
* Multipole chiral numbers

* In general, identify boundary obstructed phases

* Unexpected new phases, robust against disorder
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3 1 Higher-order topological phases
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4 ‘ Chiral-symmetric quadrupole topological insulator
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5 ‘ Chiral-symmetric higher-order topo. insulators in 2D m
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What happens with long-range hoppings? Phase diagram of the model:
« Start with quadrupole topological insulator « Trivial phase (no corner states)
(QTI) * Quadrupole phase (1 state per corner)
» Add horizontal/vertical long-range hopping * N,,=4 phase (4 states per corner)

» Add diagonal long-range hopping




s | Chiral-symmetric higher-order topological phases

Density of states in N,, = 4 phase
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7 1 What are the invariants of chiral-symmetric HOTPs?

Not predicted by symmetry-indicator invariants 2% M
Bradlyn et al. , Nature 547, 298 (2017) * 1
Po et al., Nat. Comm. 8, 50 (2017)
e . r X
In a C,-symmetric Brillouin zone, define: Ky
[M;] = # of states with evals e™(2/~1/% at M 1—*

— # of states with evals e™(2/j=1)/4 3t T
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phase irreps at T irreps at M |([My], [M3], [M3], [M4)]) 2} Qpy = 0
Ny =0 {€f3ﬂ/4’ e_fh/‘l} {Biatwﬁlj B—%3ﬂf4} (0,0,0,0) % |
Nmy — {€T3ﬂf4’ E_T3ﬂf4} {?l'ﬂf‘l’ B—Tﬂfﬂl} (1}_1}_111) ] bulk bandgap closes
ny — {6131:/4’ 6—13«/4} {BIS'JTKKI’ 8—13ﬂ/4} (010?0}0) I
outside of the Wannier center / TQC framework 00 1 9 3



I
s | What are the invariants of chiral-symmetric HOTPs? m
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Under chiral symmetry: H = ( ) Perform SVD: h = UAEUE . Define g = UAU; .

A sublattice (white)

B sublattice (gray)

Topological invariantin 1D: N, = (1/2ni) [, Tr [¢(k)Tdkq(k)]  (winding number)

Recasting the 1D winding number in terms of sublattice dipole operators:
Lin, Ke, Lee, Phys. Rev. B 103, 224208 (2021)
Consider the sublattice dipole operator .
S _ Real-space formulation
Py = X paes R, a)Exp(=i2nR/L) (R,a|, where S = A, B of a generalized 1D |

winding number |

By defining PS = ULPSUs

The winding number can be writtenas N, = (1/2xi)TrLog(P2 PPT) € Z |



° 1 What are the invariants of chiral-symmetric HOTPs?

Multipole chiral numbers

Similarly, we can define the sublattice multipole moment operators:
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resemble those in Wheeler, Wagner, Hughes, Phys. Rev. B 100, 245135 (2019), but restricted to sublattice

Using them, we obtain the “multipole chiral numbers”:
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These invariants establish a higher-order bulk-boundary correspondence




10 ‘ Strange new higher-order topological phases
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1 | Robustness against disorder

Crystalline symmetries are not necessary for the protection of these phases

Phase transition into a localized phase (random disorder to nearest neighbor hoppings
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J\ Multipole Chiral numbers
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3 | Su mmary Benalcazar and Cerjan, Phys. Rev. Lett. 128, 127601 (2022)

< Chiral symmetry protects more HOTPs than previously known
* beyond those predicted by:
+ quantized multipole moments
« TQC approaches

< These phases are protected by multipole chiral numbers

« Bulk-boundary correspondence = number of degenerate states at each
corner

< Robust to (chiral-symmetry-preserving) disorder and do not require
crystalline symmetries
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