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STANDARD MACHINE LEARNING PROCESS

2

Relevant training data 
about the problem is 
sampled from the real 
world.
• Disinformation tweets, 

retweets.

Patterns in data are 
identified using machine 
learning/artificial 
intelligence techniques.
• Deep Learning
• Bayesian networks
• Causal reasoning

A model is used to help 
predict real world patterns.
• If a tweet has pictures 

(X) -> it will go viral (Y) 

X -> Y X -> ?

Y



STANDARD MACHINE LEARNING PROCESS
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X -> Y X -> ?

Y

Primary focus has been on ML techniques and 
maximizing accuracy of the model on the 
training data.

Data Machine Learning 
Algorithm

Model



HOW DO WE HANDLE A CHANGING WORLD?
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X -> Y X -> ?

Y

Problem: How do we handle a changing world?
• Model may have been trained on “stale” 

data. 
• Model may make incorrect predictions.

• Problem: Data may have sample bias and 
class imbalances. 



SMALL CHANGES IN THE WORLD CAN CAUSE UNKNOWN 
EFFECTS

o Social media companies change user elements all the time.
◦ Twitter changed the length of tweets.
◦ Facebook included “frowny face” emojis

o Social media companies change invisible elements as well.
◦ Facebook and Twitter friend/follower recommendation algorithms.
◦ News/message recommendation.
◦ Search results (based partly on auction).

o The world changes
◦ Demographics of usage shift.
◦ New technologies emerge (snapchat/tiktok vs. facebook)
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HOW WELL DO MODELS ACCOUNT FOR THESE 
DIFFERENCES?

o Social media companies change user elements all the time.
◦ Twitter changed the length of tweets.
◦ Facebook included “frowny face” emojis

o Social media companies change invisible elements as well.
◦ Facebook and Twitter friend/follower recommendation algorithms.
◦ News/message recommendation.
◦ Search results (based partly on auction).

o The world changes
◦ Demographics of usage shift.
◦ New technologies emerge (snapchat/tiktok vs. facebook)

o Changes have UNCERTAIN impact.
◦ Example: surprising result from famous facebook experiment.
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How do we assess models for resilience to changes in the world? 



SYNTHETIC DATA IS GROWING IN USE

o Synthetic data is being used more in machine learning.

o Training Autonomous cars, facial recognition.

o Most of the uses are around machine vision applications. 
◦ Generating new scenes etc. 

o Synthetic data for social media focuses on graph topology.

o Most methods focus on historical data and matching high level metrics.

o Current methods do not account for novel changes in the world. 
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WE WILL GENERATE SYNTHETIC DATA FROM SOCIAL 
SIMULATIONS

o Social simulation methods using agent-based modeling to capture underlying cognitive and 
social features.

o Incorporate important elements drawing from social science theory.

o Known ground truth – we know exactly how complex the underlying model is.

o Key research questions:
◦ RQ1: How does complexity impact the effectiveness of data analytic methods? 
◦ RQ2: What simulation test bed characteristics correspond to real-world performance? 
◦ RQ3: How well do common data analytic methods perform under simulated concept drift? 
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Generate synthetic social data with known ground truth by using social 
simulation methods.



WE ARE DEVELOPING A PIPELINE
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WE HAVE A MODEL OF DISINFORMATION FLOW

o Agent based model of disinformation 
flow. 

o Key components:
oAgents with internal ideologies.
oMessage passing between agents
o Similar to Twitter or email.

oAgents can reshare incoming messages.

10



RQ3: HOW DO ALGORITHMS PERFORM UNDER SIMULATED 
DATA DRIFT? 

o Outline of method:
oVary parameters of simulation.
o Parameters that were varied:
o P1..P2

o Train a machine learning model using an algorithm
o M1: Linear regression
o M2: Decision trees 

o Train the algorithm using data from PX, then test on PY
o This simulates data drift – a change in the underlying parameters settings.
o Predictions:
o Some parameter regimes will be more difficult than others.
o M2 will perform better under a wider range of parameter settings than M1.
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NOTATION TO HELP CLARIFY
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POPULARITY PREDICTION IS OUR PROBLEM DOMAIN

o Problem: Predict the popularity of information using only the first few timesteps of data.
oExample: A disinformation tweet emerges 2 days ago. We need to predict how popular this tweet will be 

in a week so we can decide if mitigation measures are needed.

o This is called popularity prediction.

o What we have:
o Information about the progress of the tweet through the social network.
o For example: B retweeted post i from A at time 54.

o What we want to predict: How many people retweeted a post x number of timesteps after the 
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SETUP: SOCIAL NETWORK
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SETUP: CASCADE
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o Cascade starts with initial distributors – “authors”.



SETUP: CASCADE
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o Cascade ends after a certain time period.

o Are there nodes in the cascade that are NOT 
linked to the authors? 
◦ There is no path from an author to this person.



CASCADE PREDICTION
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CASCADE PREDICTION PROBLEM

o Given       as the number of nodes that adopted cascade c by time t.

o Goal is to predict: 

o  i.e., predict the additional number of adoptions that occur within        timesteps. 
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SIMPLE INFORMATION DIFFUSION MODEL

o Agent-based stochastic model. 

o Captures:
◦ Individual behavior and attention.
◦ Social network.
◦ Information cascades.
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INDIVIDUAL AGENT
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Inbox

Sent

Outbox

1

8

3

10 1511 1

0.1 0.9 0.10.30.2

• Inbox includes all the messages received 
by the agent.

• Messages have an unique id, and innate 
“virality” measure \phi \in [0,1].

• For now virality is determined per 
message, but you can imagine a 
situation where virality changes as 
time increases (rewarding novelty)

• Outbox are messages schedules to be 
sent this time point.

• Sent are messages that have been 
sent by the agent. 

• An agent can send a specific message 
only once.

Agent

• Agent’s have an innate 
propensity to send a message: q 
\in [0,1]

q = 0.9



INDIVIDUAL AGENT
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Inbox

Sent

Outbox

1

8

3

10 1511 1

0.1 0.9 0.10.30.2

• K messages are randomly chosen 
each time point.

• Represents cognitive 
constraints and informational 
overload.

• Remaining messages in inbox are 
discarded.

Agent

Time: 1

K = 3

q = 0.9



INDIVIDUAL AGENT
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Inbox

Sent

Outbox

1
3

• Each messages is evaluated to see 
if it should be resent.

• Current: P(resend message) = q* 
\phi.

• This needs to change though.

Agent

Time: 1

K = 3

q * \phi = 0.09

15

11

1

0.1

0.9

0.3

q * \phi = 0.81

q = 0.9

q * \phi = 0.27



INDIVIDUAL AGENT
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Inbox

Sent

Outbox

1
3

• Messages that have been sent 
before are discarded. 

• Pick messages based on 
probability of resending.

Agent

Time: 1

K = 3

q * \phi = 0.09

15

11

1

0.1

0.9

0.3

q * \phi = 0.81

q = 0.9

q * \phi = 0.27

11

0.1



INDIVIDUAL AGENT
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Inbox

Sent

Outbox

1
3

• Messages from outbox will be 
distributed to all neighboring 
agents.

Agent

Time: 1

K = 3

q * \phi = 0.09

15

11

1

0.1

0.9

0.3

q * \phi = 0.81

q = 0.9

q * \phi = 0.27
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POPULATION LEVEL
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• Agents are embedded 
in a social network.

Time: 1



SIMPLE INFORMATION DIFFUSION MODEL
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NETWORK PARAMETERS

Density

Low Medium High

Random (ER) P = 0.006 P = 0.01 P = 0.02

Scale Free (SF) M = 3 M = 5 M = 10

Small World (SW) K = 6 K = 10 K = 20

   (small world-y) P = 0.1 P = 0.2 P = 0.4



AGENT PARAMETERS

Low Medium High

Qi

   mean 0.8 1.0 1.2

   sd 5% of mean 20% of mean 50% of mean

Ki

   mean 1 5 10

   sd 5% of mean 20% of mean 50% of mean



MESSAGE PARAMETERS

Low Medium High

Number of messages

   seeded at start
100 250 500

   added every nth tick

Number of seeded 
agents 1 10 25

Nth tick 1 10 25

Virality power 5 20 50



RELATIVE ERROR

30



THE INTUITION CHECK WORKS
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THE SIMULATION YOU TRAIN ON MATTERS.
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DECISION TREE SEEMS MORE ROBUST TO DATASET SHIFT
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NEXT STEPS

o Developing a more complex model of information diffusion that integrates:
◦ Ideological consistency.
◦ Trust/Centrality.
◦ Information accuracy.

o Expanding the data analytic methods to include Deep Neural Network.

o Comparing model output to real world-data. 
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DATA ANALYTICS QUESTIONS
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1

4 82

5 76
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CASCADE OF INFORMATION
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1

4 82

5 76

3

T=0

?

?

Micro prediction task: Predict next infected user.



CASCADE OF INFORMATION
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1

4 82

5 76

3

T=1



CASCADE OF INFORMATION
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4 82

5 76

3

T=2



CASCADE OF INFORMATION
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1

4 82

5 76

3

T=3



CASCADE OF INFORMATION
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1

4 82

5 76

3

T=4
Note multiple people adopt the disinformation.
Was node 4 influenced by node 3? Time delay for node 6. 



CASCADE OF INFORMATION
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1

4 82

5 76

3

T=4
Note multiple people adopt the disinformation.
Was node 4 influenced by node 3? Time delay for node 6. 

Macro prediction task: Predict size of the cascade (6).



CASCADE OF INFORMATION
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1

4 82

5 76

3

T=4
Note multiple people adopt the disinformation.
Was node 4 influenced by node 3? Time delay for node 6. 

Misinformation veracity: Predict whether a 
cascade contains misinformation or not based 
on structure of the cascade.


