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/7 Liquid Crystal Elastomers (LCE) Background

Liquid Crystals

- State of matter with properties between liquids and solid crystals
LCDs, soap + detergents, clays

Liquid Crystal Elastomers
» LCs covalently bonded into flexible polymer network mmsp LCEs
» Unique properties:

« Reversible actuation

« Anisotropic responses (mechanical and optical)

« Auxetic in some cases

« Soft elasticity




/7 Liquid Crystal Elastomers (LCE) Background

" Liquid Crystal Elastomers

«  Thermoset polymer with LC phases
Composed of rigid molecules called mesogens
* Anisotropic, elongated shape which encourages organization

« Mesogens can be linked to the polymer backbone
at ends or sides, leading to different phases (nematic, smectic)

* Flexible ends allow mesogens to reorient while flowing
« Nematic phase: mesogens exhibit long-range orientation

Mesogens may undergo reorientation/phase transition
during mechanical loading, offering improved
energy dissipation over conventional polymers

Ula et al. “Liquid crystal elastomers: an introduction and review of emerging technologies.” Liquid
Crystals Review, 2018 6 (1): 78-107
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P 3D Printing LCEs

« Taking advantage of phase transition has been difficult due to processing
« Direct ink write (DIW) allows alignment of mesogens in finished material

 This can be tailored, allows complex geometries and configurations such as
“foam-like” materials or lattice structures for mechanical protection of assets
in impact or vibration situations

Extrude
Polydomain Monodomain _ l _
(bulk unaligned) (bulk aligned) ‘
& W Q\\% 4 0 4 %0 g I‘" y Print path
@ 00 uv \:i':' Z i
gﬁfﬁ@ 00 % a@ﬁ;fjr
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Mistry et al. “Soft elasticity optimses dissipation in 3D-printed liquid crystal elastomers.” Nature Communications, 2021, 12, Article 6677



/" Motivation

« LCE lattice was shown to protect a
chicken egg during a drop test
from 50 cm

- Equivalent conventional polymer
(bisphenol-A (BPA)) resulted in a
broken egg

« Impact velocity ~3.1 m/s
« Loading rate at impact ~6000 s

How do the constituent materials
behave at high strain rates?

Luo et al. “3D Printing of liquid crystal elastomer foams for enhanced energy dissipation under mechanical insult.” ACS Applied Materials and

Interfaces, 2020, 13, 11, 12698-12708
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/" Overview of Experiments

o
“Materials (DIW 3D printing)
BPA 90° orientation relative to loading direction (perpendicular)

BPA 0° orientation relative to loading direction (parallel)

Monodomain LCE with 90° orientation (perpendicula

Monodomain LCE with 0° orientation (parallel)
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Sorbothane commercial shock/vibe damping material
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/" Experiments
-

~ Kolsky Compression bar experiments

- 800, 1600, and 3000 s
» Quasi-static rates also conducted by CU Denver collaborators

« >50% engineering strain
« Six materials, three repeats at each condition

/

Bar configuration
« 12" long incident and transmission bars (aluminum 1” diameter)
« Quartz crystal force transducers installed at bar ends (force equilibrium check)
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Reflected Pulse 800 s1

Incident Signals

Strain
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Constraint of 50% minimum strain at 800 s
required the use of 6’ long striker bar

Due to wave overlap that occurs with a single set of
strain gages, three sets of gages were used

Gages were time shifted and the reflected pulse was
“reconstructed “ or spliced together
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BPA 0 and 90° had nearly identical behavior
LCE Monodomain 90° and Polydomain behaved similarly

LCE Monodomain 0° displayed a plateau behavior
suggesting mesogen rotation may have occurred

Sorbothane behaved like a classical

elastomer/soft rubber
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P/ Strain Energy Absorption
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« Stress-strain curves were normalized and compared to an ideal strain energy absorber

» Quasi-static LCE behaves like classical elastomer, with some soft elasticity by polydomain, mesogen rotation in LCE 0°

« At 1 s materials except LCE 0° behave like a classical elastomers. LCE 0° responds closest to ideal absorber (rate effect)
« High strain rates show improved response of all materials. LCE 0° converges towards ideal response (not a foam)

« LCE 0° can more quickly accumulate more strain energy at small strains




P Conclusions and Future Work

Measured stress-strain response for LCE, BPA, and classical elastomer materials

- Monodomain LCE materials have unique energy absorption capacity due to mesogen
rotation, behaving similarly to a foam-like “ideal absorber” despite being a solid

polymer
- Conventional polymers (BPA, Sorbothane) did not show this absorber behavior

« This mechanism can be exploited with 3D printing to design new absorbing lattices for
protection schemes

Future work

* Investigate behavior at intermediate rates

« Expand energy analysis to include unloading

- Measure and quantify mesogen rotation during deformation
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