Thislbaperldescribeslobiectiveltechnicallresultsfandlanalysis JAnylsubiectivelviewslofopinionshithatimightlbelexpressed|in}
hefpaperfdojnotinecessarilyfrepresentjthejviews]oflthejU.S JDepartmentjoflEnergyjorfthejUnitedjStatesjGovernment.

Formulation and Python Implementation of Bézier and

B-Spline Geometry!

Chad B. Hovey?

Sandia Injury Biomechanics Laboratory

Sandia National Laboratories

ISAND2022-to-come
2Author e-mail: chovey@sandia.gov
3The Sandia National Laboratories is a multimission laboratory managed and operated by National Tech-

nology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International,
Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-
NA0003525.

SandialNationalfLaboratories}islalmultimissionllaboratorvimanagedlandjoperatedibylNationalfTechnologvi&IEngineerinalSolutionslofiSandia JLLC
subsidiaryjofl[Honeywelljinternationalfinc. JforftheJU.S JDepartmentfofJEnergy'siNationalfNuclearSecurity]AdministrationfundercontracDE-N

Jalwhollylo
A0003525,

SAND2022-7702C

Contents

CONTENTS 2

SAND2022-to-come 2022-05-24

CONTENTS 3

129

131

................ 132
........................ 133
................................. 140

151

SAND2022-to-come 2022-05-24

Chapter 1

Introduction to Bézier
Geometry

We briefly discuss polynomials for three main reasons: (1) To be explicit regarding the
terminology of power versus order and be clear on the conventions and notations here,
(2) to lay the framework for more sophisticated interpolations that will rely on polynomials
in some form, and (3) to the note shortcomings of regular polynomials as a basis and thus
motivate alternative approaches.

First, with regard to power versus order, |] noted the following;:

“There is a terminology conflict between the geometry and analysis com-

munities. Geometers will say a cubic polynomial has degree 3 and order 4. In
geometry, order equals degree plus one. Analysts will say a cubic polynomial
is order three, and use the term order and degree synonymously. This is the
convention we [Cottrell, Hughes, Bazilevs| adhere to.” Page 18, Note 3.

Unlike |], we adopt the geometry community convention in this doc-
ument, thus we distinguish between order and degree. We have elected this approach
primarily for consistency of this document with historical writings of the geometry commu-
nity.

Next, there is some basic notation used with polynomials that we need to make clear
and concrete. Let fP(x) be the function of degree p (equivalently, order p+ 1) that is a sum
of variable x raised to some increasing non-negative integer power, starting from zero, and

multiplied by a constant coefficient a, such that

p
fP(x) 2 407’ + a1zt + asa® + aza® + - + G = Z a;x’. (1.1)

i=0
The function fP(x) is a polynomial of degree p, the highest non-zero power used in the
summation. Table lists the first five polynomials by order, degree, name, and function.
Hereinafter, p will be considered the index of the power of a polynomial. The p-index, a

subset of non-negative integers, will start from zero and consecutively increase by one.

[39weki

'We suggest the mnemonic of “p” as the index used for the “power” in a “polynomial.”

SAND2022-to-come 2022-05-24

Table 1.1: First five orders of a polynomial function.

order | degree | name function

o) | p= constant fo() = ag

O2) | p= linear fi(z) = ag + a1z

O(3) | p=2 |quadratic | f*(z) = ag + a1z + asx”

OM4) | p= cubic f?’(x) = a9 + a1z + asx?® + asx®

OB) | p= quartic fAz) = ag + a1z + azx® + azx® + agz?

One note regarding conventions of indices: We use the first item of a series s to be s [0],
the second item to be s[1], and so forth. We prefer the zero-based indices because it is
consistent not only with our work in Python, which is zero-based, but also with concepts
from initial boundary value problems (IBVPs), which denote initial conditions, the first
values, as occurring at .

Finally, we state as prima facie a well-known shortcoming of polynomials is their propen-
sity to overfit the data. This characteristic arises because a polynomial of degree p has p—1
changes of direction, from — f?(x) to fP(x), or vice versa. No further discussion on overfit-

ting is given here, though explications of this topic are widely available.

SAND2022-to-come 2022-05-24

Chapter 2

Bézier Curves

Several of the ideas in this section are due to many excellent references | :

: : :]. A Bézier curve is a
parametric curve defined by control points. A control point P; will have two coordinates
(x;,9;) in 2D and three coordinates (x;, y;, z;) in 3D. The parameter is typically denoted t¢.
The bounds for ¢ are 0 < ¢ < 1 unless otherwise indicated.

Here, t does not denote time. Rather, ¢ can be thought of as a “pseudo-time,” wherein
the parameterization flows from beginning to end of the ¢ bounds. Also, the bounds of ¢
will later be shown to be arbitrary. For now, however, it is much more convenient to state
the bounds as between zero and one.

A Bézier curve of degree p requires p + 1 control points. For example, a Bézier curve

2.1. BEZIER LINE 8

that is a line (degree p = 1) requires two control points. Affine transformations may be
used to modify the control points, e.g., to scale, reflect, rotate, or translate (offset) the

control points.

2.1 Bézier Line

Let P be the set of two points Py = (x9,%0,20) € R? and Py = (21,y1,21) € R?. Let
the parameter ¢ be a member of T = [0,1] C R. Then, let C(t; Py, P1) : P x T — R3
be parametric equation for a line between two points Py and P;. This parameterization

constructs the Bézier line, which is the parameterized linear interpolation Py and P,
C(t; Py, P1) 2 (1—t) Py +t P, (2.1)

or in explicit coordinate form,

() o Ty
yt) p=00—=t)q vo ¢+tq un - (2.2)
z(t) 20 21

SAND2022-to-come 2022-05-24

2.2. BEZIER QUADRATIC 9

2.2 Bézier Quadratic

Let Q(t; Q,, Q) be the parametric equation for a quadratic between two points Q, and
Q. Let the position of these two points themselves be parameterized by three points Py,
P, and P>, such that

Q(t; Po, P1) = (1 —1t) Py +t Py, (2.3)
Q. (t; P1,Py) =(1—t) P+t Ps. (2.4)

Thus, the position of Q (%) is on the line between points Py and P, and parameterized by t.
The position of @, () is on the line between points P; and Py and likewise parameterized
by t. At t =0, Qy(t) resides at Py, Q,(t) resides at Py. At t = 1, Q,(t) resides at Py,
Q, (1) resides at P5. Finally, let any position along the quadratic Bézier curve Q(t; Q,, Q)
be defined as

Q(t;Q(1), Q1 (1)) £ (1 —1) Qu(t) +1 Qy(t). (2.5)

This curve can be recast in terms of the three points Py, Py, and Py by substituting ()
and (7.1),

Q(t; Py, P, Py) = (1 —t)? Py +2t(1 — t) Py +t* Ps. (2.6)

SAND2022-to-come 2022-05-24

2.2. BEZIER QUADRATIC 10

Figure | (a) illustrates an example quadratic Bézier curve, with the three control points
Py, Py, and P, indicated. ©~ We will designate the number of control points to be (n+ 1).
Thus, the number of control points in the current example (Figure * 1) is (n+1) =3 =
n = 2. Each control point can be identified in sequence as P;, with « = 0,1,...n. The
maximum degree Bézier that can be constructed is two (degree p requires p + 1 control

points). Thus we see:

Given a series of (n + 1) control points,

we can construct a Bézier curve of degree p = n.

'We do not call Q, and @, control points, since they are dependent on Py, P, and P through parameter ¢ in (*) and

(2.4).

2Figure ~ | (b) shows the same curve as in Figure ~ | (a), just with a recursive notation, discussed in Section

SAND2022-to-come 2022-05-24

2.2. BEZIER QUADRATIC 11

Figure 2.1: A Bézier quadratic curve illustrated at ¢ = 0.5 with (a) original notation and (b) the de Casteljau’s

algorithm notation. Reference: de_casteljau.py.

SAND2022-to-come 2022-05-24

2.2. BEZIER QUADRATIC 12

Example 1.

Figure illustrates the same quadratic Bézier curve shown in Figure ~ |, generated at six
discrete points in the interval ¢ € [0, 1]. O

Figure 2.2: The Bézier quadratic curve discussed in Figure ~ ', illustrated in sequence with ¢ starting at 0

and ending at 1. Reference: de_casteljau.py.

SAND2022-to-come 2022-05-24

2.2. BEZIER QUADRATIC 13

With these Figures * '~ " in mind, a few additional observations can be made:

e The control points sequence Py, P, P> is a coarse and discrete approximation the
continuous quadratic Bézier curve Q(?).

e The end points, Py and P», are interpolated, but the interior point P; is not inter-
polated.

e The tangent of the curve Q(t) at t = 0 is parallel to the line P; — Py. The tangent
of the curve Q(t) at t = 1 is parallel to the line Py — Py.

e The entire curve Q(t) is contained in the triangle formed with vertices Py, Py, Ps.

3These items are stated as true but not proven here. Consult the references cited herein for proofs.
4This will generalize to all interior points for higher-degree Bézier curves.

SAND2022-to-come 2022-05-24

2.3. DE CASTELJAU’S ALGORITHM 14

2.3 de Casteljau’s Algorithm

The foregoing development can be generalized, and is known as de Casteljau’s algorithm.
Let P{ be control points where
e i denotes the control point index, i = 0, 1,...n, (total of n+ 1 control points), and
e d denote the degree of the curve, d =0,1,...p.
Thus P? denote the base level control points. In the preceding section,

Py~ P), d=0, thus P! is a point, importantly not parameterized by ¢t (2.7)

P, — P (2.8)
P, — PY, (2.9)
Q,(t) — Py(t), d=1,thus P;(t) is a line parameterized by t, (2.10)
Q,(t) — Pi(t), and (2.11)
Q(t) — Pj(t), d=2,thus P(t) is a quadratic parameterized by ¢. (2.12)

Then, de Casteljau’s algorithm states

Pit)=(1—t) Pi'(t) +t PL(b). (2.13)

SAND2022-to-come 2022-05-24

2.3. DE CASTELJAU’S ALGORITHM 15

The Bézier quadratic written in (7) would then be rewritten as

P3(t) = (1— 1) Py(t) + PL(1), (2.14)
=(1-t)[Q1-t) Pi+tP) +t[(1—t) P)+tPY, (2.15)

= (1-t)* Py +2t(1 —t) P) + > Py, (2.16)

Figure illustrates for the Bézier quadratic development, (a) the original notation and

(b) the de Casteljau’s algorithm notation.

Although de Casteljau’s algorithm is well-suited for computer implementation, it is
instructive to write the quadratic Bézier P3(t) in matrix form for any sequence of three
control points' P;, P;.q, and P;,5. With

P) — P,

(0]
P — P,
P)— P;,,, and

P;(t) — C?(t), to denote a curve C of degree p = 2,

5This is somewhat of a return map, undoing the notation adopted to explain de Casteljau’s algorithm with i = 0.

SAND2022-to-come 2022-05-24

2.3. DE CASTELJAU’S ALGORITHM 16

the quadratic Bézier C?(t) is written in matrix form as

C*(t) = [P; Py Pio | - f(t4t,1), (2.21)
x(t) Ti Tigl Tit2 1 -2 1 i
y&) ¢ =1 ¥ Yir1 Yiro 2 0 t o (2.22)
z(t) % Zi4l Zig2 sym. 0 1

e Tt e

curve dependent

SAND2022-to-come 2022-05-24

2.4. BEZIER CUBIC 17

2.4 Bézier Cubic
The cubic Bézier curve Pj(t), given four control points P}, P}, P, and Pj, is given by
P(t) = (1 —t)3 P)+3t(1 —t)? PY 4 3t3(1 — t) P) +t3 PY. (2.23)

Like the quadratic, the cubic Bézier Pg(t) may be writtin in matrix form for any sequence

of four control points P;, P;,1, P;,» and P;,3. With

P}~ P, (2.25)
PY — Py, (2.26)
P) — P;.3, and (2.27)
P;(t) — C>(t), to denote a curve CP of degree p = 3, (2.28)
the cubic Bézier C3(¢) is written in matrix form as
Ct) =[P; Py Py Py - f(t5t1), (2.29)
[-1 3 3 1] ()
(1) i Tiyl Tir2 Tiy3 9
-6 3 0 t
y(t) ¢ = | ¥ Yir1 Y2 Yits 0 0 . . ’ (2.30)
2(t) Zi Zitl Zit2 %43
N -— ” Sym. 0] L 1)
control points ~ -~ -
curve dependent curve independent

SAND2022-to-come 2022-05-24

2.5. BERNSTEIN POLYNOMIALS 18

2.5 Bernstein Polynomials

The general form of a degree p Bézier curve CP(t) defined by p + 1 control points P;,
1 =20,1,...,p, is given by
p

cr(t) 2 Y BI(t)P;, (2.31)

1=0

where BY(t) is a Bernstein polynomial, defined as

BY(t) = (?) #1(1—)P~ and where (f) __P (2.32)

i il (p—1)!

is the binomial coefficient. The binomial coefficients are readily attained from Pascal’s
triangle, written up to p = 4 in Table
Using (7 1), the linear (p = 1), quadratic (p = 2), cubic (p = 3), and quartic (p = 4)

Bézier curves can be written, respectively, in explicit form as

C'(t) = By(t)Py + B;(t) Py, (2.33)
C*(t) = B3(t)Py + Bi(t)Py + B (t) P, (2.34)
C3(t) = Bi(t)Py + B;(t)Py + B3 (t) Py + B3 (t) Ps, (2.35)
C*(t) = Bj(t)Py + B{(t)Py + B3(t)Py + B;(t)P3 + Bi(t) Py. (2.36)

SAND2022-to-come 2022-05-24

2.5. BERNSTEIN POLYNOMIALS

19

Table 2.1: First five degrees of binomial coefficients from Pascal’s triangle.

degree | binomial coefficient

p=20 1

= 1 1
p=2 1 2 1
= 1 3 3 1

SAND2022-to-come

2022-05-24

2.5. BERNSTEIN POLYNOMIALS 20

Observations include (see Figure for a visual illustration of these properties):

e The Bernstein polynomials always sum to one,

p

> BI(t) =1.0. (2.37)

1=0

This concept is called partition of unity.
The first basis is unity B{(0) = 1 at the start of the interval ¢ = 0, when all other
bases are zero. Similarly, the last basis is unity B(1) = 1 and the end of the interval

t = 1, when all other bases go to zero.

The polynomials are non-negative,

BY(t) > 0 for all ¥ with ¢ € [0, 1]. (2.38)

Each polynomial B?(t) has a single maximum in the parameter space ¢t € [0,1] at

t=1/p.
All polynomials are symmetric in ¢ about ¢t = 1/2.

6See references cited herein for proofs.

SAND2022-to-come 2022-05-24

2.5. BERNSTEIN POLYNOMIALS 21

Example 2.
The Bernstein polynomials for a linear (p = 1) Bézier curve are

BL(t) = ((1)) 01—)10 = (1). (2.39)

EHOE (1)tl(l —4) = =z (2.40)

which match the coefficients in (*). These polynomials are shown in Figure © “(a). O

SAND2022-to-come 2022-05-24

2.5. BERNSTEIN POLYNOMIALS 2

Example 3.
The Bernstein polynomials for a quadratic (p = 2) Bézier curve are
2
HOE 0) 1 —1)*0 = (1 —t)?, (2.41)
2
EHOE)) tH (1 —t)* 1 =2t(1 — 1), (2.42)
HOE (2 > 21 —t)* 2 = ¢ (2.43)
% e 2 - 9 c

which match the coefficients in (7 10). These polynomials are shown in Figure © “(b). O

SAND2022-to-come 2022-05-24

2.5. BERNSTEIN POLYNOMIALS 23
Example 4.
The Bernstein polynomials for a cubic (p = 3) Bézier curve are
EHOE 3) 01 =)0 = (1 — 1), (2.44)
304) — (3 101 _ #\3-1 _ 2
Bi(t) = | | |t A=t =3t(1—1)", (2.45)
HOE (g) t2(1 —t)%2 = 3t*(1 — 1), (2.46)
HOE (3 > 31 —t)7 =+ (2.47)
3 i 3 -) :

which match the coefficients in (

SAND2022-to-come

). These polynomials are shown in Figure

]

2022-05-24

2.5. BERNSTEIN POLYNOMIALS 24
Example 5.
The Bernstein polynomials for a quartic (p = 4) Bézier curve are
4
RO) 1 -0 =1 —t)4 (2.48)
EHOE) th(1 —)t = 4t(1 — 1), (2.49)
4
Bi(t) =)) 21—)2 = 6t%(1 — t)?, (2.50)
4 4 3 3
Bs(t) = > 31—t =41 - 1), (2.51)
B(t) = >t4 (1—t)* =+ (2.52)

These polynomials are shown in Figure
p=295,6,7,8 [

SAND2022-to-come

(d). Figure

shows the Bernstein polynomials for

2022-05-24

2.5. BERNSTEIN POLYNOMIALS 25

(a) linear (p=1) (b) quadratic (p = 2)

(¢) cubic (p = 3)

Figure 2.3: Bernstein polynomials for Bézier (a) linear, (b) quadratic, (c) cubic, and (d) quartic curves.

Reference: bernstein.py, bernstein_polynomial.py.

SAND2022-to-come 2022-05-24

2.5. BERNSTEIN POLYNOMIALS 26

Figure 2.4: Bernstein polynomials for Bézier (a) p =5, (b) p =6, (¢c) p =7, and (d) p = 8 curves. Reference:

bernstein_extended.py.

SAND2022-to-come 2022-05-24

2.5. BERNSTEIN POLYNOMIALS 27

Example 6.

Using the Bernstein polynomials for cubic (p = 3) Bézier curve, illustrate the curves generated
by the following control points, labeled 0, 1, 2, 3, as shown in Figure ~ ©. [

Figure 2.5: Cubic (p = 3) Bézier curves constructed from Bernstein polynomials and control points labeled
0,1,2,3. Dashed, dotted, and dashed-dotted lines show the incremental construction of the curve as each
control point is added. Reference: bernstein_sum.py.

SAND2022-to-come 2022-05-24

2.5. BERNSTEIN POLYNOMIALS 28

Example 7.
The letters in “cubic” can be created from cubic (p = 3) Bernstein polynomials. The “u” shows
the canonical form of the cubic Bézier, with the first and last points as the anchors, and the

second and penultimate points as the tangents from their respective anchors. See Figure
]

Figure 2.6: Spelling of the first three letters in the word “cubic” as a mnemonic for the shapes created with

cubic Bézier curves. The “u” is the canonical shape. Capital “I” (created with co-linear control points) and

[1P%)]

lowercase “c” are created as shown in Figure * . Reference: bernstein_sum_ext.py.

SAND2022-to-come 2022-05-24

2.5. BERNSTEIN POLYNOMIALS 29

Example 8.

Modern vectorized fonts are created from Bézier curves. Figure © / shows the letter “e”, Georgia
font family, made from eleven (11) Bézier cubic (p = 3) curves and twenty-seven (27) control
points. [

SAND2022-to-come 2022-05-24

2.5. BERNSTEIN POLYNOMIALS 30

—
2]
+~
=
=
jm}
=
S
=

200 300
y (font units)

Figure 2.7: Letter “e” composed of Bézier curves. See view_bezier.py and Georgia-e-config. json on the
O GitHub

SAND2022-to-come 2022-05-24

https://github.com/sandialabs/sibl/

Chapter 3

Bézier Surfaces

The Bézier curve, C, was parameterized by ¢t. For the Bézier surface, S, we have two
parameters, t and u, with ¢t € [0,1] and u € [0,1]. The Bézier surface is an extension of
the Bézier curve, defined in (' 1).

Let P be the set of control points, P;;(r,y,z) € R® V i € 0...p, j € 0...q, be
arranged in a non-decreasing sequence in two dimensions, referred to as the control net
N . The control net N is the arrangement of control points by control point index into a

non-decreasing net in (t,u) space:

IBézier volumes, V, will then have three parameters ¢, u, and v. See Chapter | for details.
2The term control grid is sometimes used interchangeably with the term control net. We prefer “net” to “grid” because
the latter has connotation of a planar arrangement. However, the actual three-dimensional arrangement, in general, is faceted

and not planar.

31

32

= O<u<l|u=
t=20 P()?() P()’l Pqu
P P N 2
O<t<l1 .1’0 .1’1 . }’q
t=1 Pyoo | Pp1 -+ | Ppy

The general form of a Bézier surface SP4(t, u) of degree p and p + 1 control points for

the t parameter and of degree ¢ and ¢ + 1 control points for the u parameter is defined as

sPe(tu) 23N BR(E) BY(w) Py (3.1)

i=0 j=0

The Bézier basis functions are defined as the outer product of two Bernstein polynomials,
P.q A pp q
Bl (t,u) = B (t) ® Bj(u). (3.2)

While not necessary, it is often the case in practice that the number of control points for
the t and u parameters are taken to be the same, i.e., (p+ 1) = (¢ + 1). In this case, the
foregoing definition reduces to

BY(t,u) 2 BI(t) ® BY(u). GE)

Three examples of basis functions are presented:
Bj;(t,u) bi-linear in Figure 1,
BZ-% ;(t,u) bi-quadratic in Figure . °, and
B} ;(t,u) bi-cubic in Figure

SAND2022-to-come 2022-05-24

33

Figure 3.1: Bézier bi-linear basis functions. See view_bernstein_surface.py on the € GitHub

SAND2022-to-come 2022-05-24

https://github.com/sandialabs/sibl/
https://github.com/sandialabs/sibl/

34

Figure 3.2: Continued from previous figure.

SAND2022-to-come 2022-05-24

35

Figure 3.3: Continued from previous figure.

SAND2022-to-come 2022-05-24

36

Figure 3.4: Continued from previous figure.

SAND2022-to-come 2022-05-24

37

Figure 3.5: Bézier bi-quadratic basis functions.

SAND2022-to-come 2022-05-24

38

Figure 3.6: Continued from previous figure.

SAND2022-to-come 2022-05-24

39

Figure 3.7: Continued from previous figure.

SAND2022-to-come 2022-05-24

40

Figure 3.8: Continued from previous figure.

SAND2022-to-come 2022-05-24

41

Figure 3.9: Continued from previous figure.

SAND2022-to-come 2022-05-24

42

Figure 3.10: Continued from previous figure.

SAND2022-to-come 2022-05-24

43

Figure 3.11: Continued from previous figure.

SAND2022-to-come 2022-05-24

44

Figure 3.12: Continued from previous figure.

SAND2022-to-come 2022-05-24

45

Figure 3.13: Continued from previous figure.

SAND2022-to-come 2022-05-24

46

Figure 3.14: Bézier bi-cubic basis functions.

SAND2022-to-come 2022-05-24

47

Figure 3.15: Continued from previous figure.

SAND2022-to-come 2022-05-24

48

Figure 3.16: Continued from previous figure.

SAND2022-to-come 2022-05-24

49

Figure 3.17: Continued from previous figure.

SAND2022-to-come 2022-05-24

o0

Figure 3.18: Continued from previous figure.

SAND2022-to-come 2022-05-24

ol

Figure 3.19: Continued from previous figure.

SAND2022-to-come 2022-05-24

02

Figure 3.20: Continued from previous figure.

SAND2022-to-come 2022-05-24

o3

Figure 3.21: Continued from previous figure.

SAND2022-to-come 2022-05-24

o4

Figure 3.22: Continued from previous figure.

SAND2022-to-come 2022-05-24

25

Figure 3.23: Continued from previous figure.

SAND2022-to-come 2022-05-24

o6

Figure 3.24: Continued from previous figure.

SAND2022-to-come 2022-05-24

o7

Figure 3.25: Continued from previous figure.

SAND2022-to-come 2022-05-24

o8

Figure 3.26: Continued from previous figure.

SAND2022-to-come 2022-05-24

29

Figure 3.27: Continued from previous figure.

SAND2022-to-come 2022-05-24

60

Figure 3.28: Continued from previous figure.

SAND2022-to-come 2022-05-24

61

Figure 3.29: Continued from previous figure.

SAND2022-to-come 2022-05-24

62

Example 9.
The Utah teapot is a cononical example of shape composition from Bézier surfaces. In Fig-
ure , we show the quarter-model (and half-symmetry) version of the Utah teapot created

from ten (10) Bézier bi-cubic (p = 3, ¢ = 3) surfaces and one-hundred-twenty-seven (127)

control points. [

SAND2022-to-come 2022-05-24

63

n
X
S
)
-~
o
=Y0)
i
2
N

OO’éisy

g
|
=
(GV]
7 //@j
2
&‘é

Figure 3.30: The quarter-model (and half-symmetry) version of the Utah teapot composed of Bézier surfaces.
See view_bezier.py and utah-teapot-config.json on the € GitHub

SAND2022-to-come 2022-05-24

https://github.com/sandialabs/sibl/

Chapter 4

Bézier Volumes

Bézier volumes derive as a natural dimensional extension of Bézier surfaces. The control
point net/grid used for surfaces becomes a control point lattice for volumes. The general

form of a Bézier volume VP47 (¢, u, v)

of degree p and p 4+ 1 control points for the ¢ parameter,
of degree ¢ and ¢ 4+ 1 control points for the u parameter, and

of degree r and r + 1 control points for the v parameter,

is defined as

VPO (¢ y, v) 2 Z Z BY(t) BY(u) Bj(v) Pijy. (4.1)

65

The Bézier basis functions are defined as the outer product of three Bernstein polynomials,

BP (t,u,v) £ BP(t) ® B(u) ® By(v). (4.2)

475

While not necessary, it is often the case in practice that the number of control points for
the ¢, u, and v parameters are taken to be the same, i.e., (p+1) = (¢+1) = (r+1). In
this case, the foregoing definition reduces to

B?.

ikt u,v) 2 Bi(t) ® Bj(u) ® By(v). (4.3)

SAND2022-to-come 2022-05-24

66

Example 10.
In Figure , we show a quarter-symmetry thick pipe constructed from one (1) Bézier tri-

quadratic (p = ¢ = r = 2) volume and twenty-seven (27) control points (three control points
for each of the three dimensions).
[

SAND2022-to-come 2022-05-24

67

L —
n
)
o=
S
=S
<
+~
j=10)
o
<5}
—
N

Figure 4.1: The quarter-symmetry thick pipe composed a Bézier volume. See view bezier.py and
triquad-qtr-cyl-config.json on the) GitHub

SAND2022-to-come 2022-05-24

https://github.com/sandialabs/sibl/

Chapter 5

Introduction to B-Spline
Geometry

5.1 Parameter Space

In Bézier geometry, parameter space t for curves is a real number between zero and unity,

inclusive,
teRC[0.0, 1.0]. (5.1)

For B-spline geometry, the parameter space is taken as a real number between zero and

I This is extended by w for surfaces and again by v for volumes.

68

5.2. KNOTS, KNOT SPANS, KNOT VECTORS 69

some number, Ty, typically larger than unity as seen in the forthcoming discussion. For

Nnow, we say
teRC [Ty T1] (5.2)

So, the parameter space for Bézier curves will be a special case of the parameter space for

B-spline curves when Ty = 0.0 and Ty = 1.0.

5.2 Knots, Knot Spans, Knot Vectors

Next, we identify discrete, non-decreasing values along this interval [To, T |, and define
these values as knots. Knots decompose the parameter space into sequential sub-intervals,

called knot spans. The set of (I + 1) knots compose a knot vector T, viz.
T={To,Ti,To,....Tr } = {Ti}ip (5.3)

Because knots mark the termination points, beginning and end, of knot spans, they
impart a measure on the knot span, which is simply the difference between the values at
sequential knots, and may be as small as zero, since knot sequence values are non-decreasing.
For example, the value of the first knot span is equal to the value (T; — Ty). A knot vector
with (I 4 1) knots has (I) knot spans.

2For curves, a knot in parameter space will get mapped to a point in physical space. For surfaces, a knot will get mapped to

a curve. For volumes, a knot will get mapped to a surface. For now, consider only curves with knots.

SAND2022-to-come 2022-05-24

5.2. KNOTS, KNOT SPANS, KNOT VECTORS 70

Remark 5.2.1. Recastability of the Parameter Space
Since the B-Spline domain [0.0, Ty | is a parameter space, it can be recast. Two examples
follow:
e Normalization: The entire interval can be divided by T7, making the new parameter
space be [0.0, 1.0 |, which is a recovery of the Bézier parameter space.
e Offset: The interval may be shifted up or down by some constant value. Thus, Ty is

not necessarily always zero.

Remark 5.2.2. Unit Knot Span Convention

It is a convention, but not a requirement, to denote knot values as non-negative integer val-
ues starting from zero, though they actually have non-negative real values. For example, the
knot vector T = { 0.0, 0.5, 1.0 } can be equally-well represented as T = { 0.0, 1.0, 2.0 }.
Both have three knots but only the latter has a unit knot span. The unit knot span

convention is used because it is often convenient to count knots, one by one.

Remark 5.2.3. Connection to Finite Element Analysis (FEA)

Knot spans will also be known as elements because we perform numerical quadrature over

a knot span in isogeometric analysis (IGA) |]. In IGA, the parent (or

local or parameterized) element is the knot span. All of the knot spans described by a

single knot vector are defined as a patch. A patch spans the B-spline parameter space.
In contrast, isoparametric analysis used for FEA has two notions of element: the parent

(or local or parameterized) element and the physical (global) element.

SAND2022-to-come 2022-05-24

5.3. UNIFORM KNOT VECTORS 71

5.3 Uniform Knot Vectors

When all the knot spans of a given knot vector are equal, the knot vector is uniform.
Otherwise, the knot vector is non-uniform. We will begin the discussion with uniform

knot vectors because they are the easier of the two variants to develop.

Remark 5.3.4. Knot Vectors Notation
Knot vectors are composed of real numbers. Hereafter we will write them without decimal
values when possible. This shorthand notation should not be construed as integer values.

Knot vectors belong to the set of real numbers and (generally) not to the set of integers.

Example 11.
A uniform knot vector containing 10 knots might be written as

T={0,1,2234,506,78 9} withtcRcC[0, 9] (5.4)
0

Example 12.
A non-uniform knot vector containing 10 knots might be written as

T={0,02234,56,728 9} withtcRcC][0, 9] (5.5)

The first two knot spans have a value of zero and two, respectively. The remaining knot spans
have a value of one. Thus, the knot vector is non-uniform. Notice also the repeated knot value

SAND2022-to-come 2022-05-24

5.4. BASIS FUNCTIONS 72

of zero at the beginning of the knot vector. This is allowed since knots are a non-decreasing
sequence. Repeated beginning and end knots will have a particular significance, as shown later
in Section 5 5. [

5.4 Basis Functions

Let the B-spline normalized basis function of degree p be written N?. Here, p denotes
degree; it is not an exponent. After developing the basis functions, we then use them to
construct B-spline curves in Chapter (. The “B” in B-spline stands for basis.

The first normalized basis function is the unit piecewise constant, defined as

forp=0: (5.6)

No(t) é 1 if Tz S t < Ti—i—h
! 0 otherwise.

Notice for the non-zero range, defined over T; <t < T;,1, the domain
e left-hand-side uses <, but the
e right-hand-side uses < (and not <).

Example 13.
B-spline constant. Figure shows N?(t) from (5 0), the unit piecewise constant basis
functions (degree p = 0), in parametric space, t € [Ty, T1], I = 6, for the uniform knot vector

SAND2022-to-come 2022-05-24

5.4. BASIS FUNCTIONS 73

T — { T07T17T27T39T47T57T6 } — { 07 17 27 37 47 57 6 } (57)

SAND2022-to-come 2022-05-24

5.4. BASIS FUNCTIONS 74

Figure 5.1: B-spline constant (p = 0) basis function. See plot_bspline basis manual.py on

SAND2022-to-come 2022-05-24

https://github.com/sandialabs/sibl

5.4. BASIS FUNCTIONS 7

Ot

Figure 5.2: Continued from previous figure.

SAND2022-to-come 2022-05-24

5.4. BASIS FUNCTIONS 76

For a basis function of degree p > 0, e.g., p =1,2,3, ..., the normalized basis functions

are defined by the Cox-de Boor recursion formula:

A t—T; . p Titpt1 — ¢ 1
8 1T Nl 4 2 NP). 5.8
Tip—Ti () Tispsr — Tig1 () (5:8)

forp>1: NF(¢)

The recursive definition can lead to cases where 0/0 is encountered. In these cases, the

quotient is simplied defined as zero, viz.

if Bq. (1) = 00,

then Eq. (7) £ 0. (5.9)
Example 14.
B-spline linear. Using (© ©), the first (¢ = 0) normalized basis function of degree (p = 1) is
t—To 1o Toy141 =t -
Ni@t) = ——— N7 + NI @), 5.10
0() TO+1 _ T() 0 () TO+1-|-1 _ T()J,-l 0-‘1-1() ()
t—To .o To—1t 0
= N (t — N;(¥). 5.11
Tl_TO 0() T2_T1 1() ()
Review of Figure | shows N{(t) and N{(t) act as “on” and “off” switches, since
1 ifTop<t<Ty, 1 fT<t< Ty,
NO(t) = To=Es and, NO(t) = TH=ts A (5 9)
0 otherwise; 0 otherwise.

SAND2022-to-come 2022-05-24

5.4. BASIS FUNCTIONS 77

Thus,
(t—To) / (Tl—To) IfTO <t<Ty,
N&(t) = (Tg = t) / (T2 — T1) if T <t< T2, (513)
0 otherwise.
Figure shows the B-spline linear basis functions (degree p = 1) over the same knot vector
used for Figure - '. Note, for the given knot vector T ={ 0, 1, 2, 3, 4, 5, 6 }, there is one

fewer complete linear basis function than there is complete constant basis function. Explained
below, this is due to local support, which increases with increasing degree and thus decreases
the number of complete basis functions that can exist in the extents of the knot vector. [

Remark 5.4.5. Notice the first (i = 0) normalized basis function, N/(t), of degree p
requires (p + 1) knots. Specifically with p = 11in (1), NJ(t) requires knots { To, T1, T2 }
to be defined. This will give rise to a relationship between the number of knots and both
the degree and number of control points in (1.).

Since we have not yet introduced control points, this concept is a bit ambiguous for
now. However, at this early point, it is useful to seed the notion of the first basis function
(which will eventually be multiplied by the first control point) of degree p requires (p + 1)
knots.

This example illustrates the pattern of local support. This pattern can be stated as
follows:

SAND2022-to-come 2022-05-24

5.4. BASIS FUNCTIONS 78

A B-spline basis function of degree p

will have local support over (p + 1) knot spans.

Figure also shows the pattern of periodicity in the basis functions for N}!(¢). In
general, the unit piecewise linear (degree p = 1) basis function at knot T; can be written

as

=T/ (Tia =Ty Ty <t <Tiy,
N'(@t) =4 (Tia—1)/ (i — Tix1) if Tipr <t < Ty, (5.14)

otherwise.

The periodicity pattern exists for all B-spline basis functions N7 (¢) of any degree p > 0.

SAND2022-to-come 2022-05-24

5.4. BASIS FUNCTIONS 79

Figure 5.3: B-spline linear (p = 1) basis function. See plot_bspline basis manual.py on

SAND2022-to-come 2022-05-24

https://github.com/sandialabs/sibl

5.4. BASIS FUNCTIONS 80

Figure 5.4: Continued from previous figure.

SAND2022-to-come 2022-05-24

5.4. BASIS FUNCTIONS 81

The local support property means that B-spline basis functions of increasing degree
require an increasing number of knots to be defined. Increasing the degree of the B-spline
basis tends to both increase the duration and decrease the amplitude of the non-zero values
of the function. A basis function of degree p also depends on the basis functions of decreasing
order, e.g., (p—1), (p—2), and so on. This dependence is defined through the Cox-de Boor
relationships.

Figure illustrates the Cox-de Boor recursion algorithm, with local support over knot

spans.
i Tin Tivo Tiys Tia
NZO | Nz%)—i-l | Nz%)—FQ | Ni;)—l-3
N ; N, zl—i-l Niis
]\:/'12 Nza—l
e

Figure 5.5: Graphical illustration of Cox-de Boor recursion algorithm up to the degree of cubic (p = 3).

SAND2022-to-come 2022-05-24

5.4. BASIS FUNCTIONS 82

Figure illustrates the Cox-de Boor recursion algorithm, with local support over knot

spans, reimagined with a gridded shape.

Ti

degree + spans # knots T

p:O 1 2 NZO — Ti+1
| I
p=1 2 3 N} — Ny — Tig
| I I
p=2 3 4 N? — N&L, — Ny — T
| I | |
p=3 4 5 N} — N, — Nt, — Ny — Ty

Figure 5.6: Graphical illustration of Cox-de Boor recursion algorithm up to the degree of cubic (p = 3), with

gridded arrangement.

SAND2022-to-come 2022-05-24

5.4. BASIS FUNCTIONS 83

Example 15.
B-spline quadratic. Using (© ©), the i" normalized basis function of degree (p = 2) is

t—T; Tis—1

N2(t) = —— L Nt NL . (¢ 5.15
U () Ti+2 . T7, U () Tyj+3 . Ti—|-1 Z+1()7 ()
E—T, [t—T, Tyio—t
_ v v No ¢ 1+ NO ¢
Tivo — T, {Ti+1 -T, °) + Tivo— Tina il)} "
Tiz3—1t t—Tit1 0 Tig—t 0
N (T N o(t). 5.16
Tivs — Tina {Ti+2 — Tit1)+ Tivs — Tipo i+2(t) (5.16)
(T, t-T,
L. R if T; <t < T4,
Tipo—T; Tip1 =T, | _ i
t—T, Tio—t Toig—1 I
= T T-+2 T + T~+3 T .I__H if Tip1 <t <Tiqo,
NZ-Q (t) _ < +2 7 +2 i+1 +3 +1 1+2 +1 (517)
Titz—1 Titz—1 :
P =—————— [Ccoococconoocconocooaooc fTiio <t < T3,
Tivs —Tiy1 Tivs — Tigo T s .
O o otherwise.

]

SAND2022-to-come 2022-05-24

5.4. BASIS FUNCTIONS 84

Figure 5.7: B-spline quadratic (p = 2) basis function. See plot_bspline basis manual.py on

SAND2022-to-come 2022-05-24

https://github.com/sandialabs/sibl

5.4. BASIS FUNCTIONS 85

Figure 5.8: Continued from previous figure.

SAND2022-to-come 2022-05-24

5.4. BASIS FUNCTIONS

86

Tiya —1
Tl o g T
Tito — Tina H ‘
o E
Tl
T 1
| x
=
T'H-3 —1 Nl Ti+3 —t NQ
——— T R e 42
Tiys — Tip1 i Tiys — Tivo H
o7 ol F
T T
I_| ! |_| |
| | T
- =
T'H-4 —t N2 Ti+4 —t Nl
——— T 2
Tiva— Tit1 O Tis — Tige i

SAND2022-to-come

Tiva—1t

Tiva — Tiss

Figure 5.9: Cox-de Boor illustration up to cubic (p = 3).

Tivs

I

Nl [0]— T

2022-05-24

5.4. BASIS FUNCTIONS 87

Example 16.

The first B-spline basis functions, N (t) for degrees p € [0, 1,2, 3,4], are plotted over (p + 1)
knot spans where there is local support. The knot vector is composed of five knots T =
{T:} =10, 1,2, 3, 4, 5}. Note that each basis function has (span = degree + 1), as
shown in Fig. .

Figure 5.10: The first B-spline basis functions for degrees p = 0 to p = 4. See plot_bspline NO_pO_to_p4.py

on

SAND2022-to-come 2022-05-24

https://github.com/sandialabs/sibl

5.5. NON-UNIFORM KNOT VECTORS 88

5.5 Non-Uniform Knot Vectors

The repetition of a knot value in the knot vector causes a knot span to go to zero, which is
one way to cause knot vector to change from uniform to non-uninform.
From this point forward, unless otherwise indicated, we focus on a special case of non-

uniform knot vectors called open knot vectors,

T = { Ta, .. .1, Ta 5 Tp_|_1, ey TI—p—17 Tb, 0 o .1, Tb }, (518)
P+ p+

where the first knot value, T, zt Ty, and the last knot value, T, = T1, are repeated (p+ 1)

times.

3The other way to cause a uniform knot vector to become non-uniform without repeated knot values is to have two or more
knot spans with non-equal (and non-zero because repeated knot values are absent) knot interval distance.

4Open knot vectors are sometimes also called clamped knot vectors or non-periodic knot vectors.

SAND2022-to-come 2022-05-24

5.5. NON-UNIFORM KNOT VECTORS 89

e In Section , we introduce non-uniform knot vectors by reviewing cases where the
first and last knots are repeated one or more times.

e In Section , we see how results in the preceding section can give rise to the Bézier
basis functions as a special case of the B-spline basis functions.

e In Section , we examine repeated knots that are repeated in general throughout
the knot vector (both at the knot vector endpoints as well as within the knot vector).

e In Section , we generalized the B-spline basis functions further, by allowing for

non-uniform (and non-zero) knot spans within the knot vector.

SAND2022-to-come 2022-05-24

5.5. NON-UNIFORM KNOT VECTORS 90

5.5.1 Repeated Knot Values at Knot Vector Endpoints

Example 17.

The nine B-spline linear basis functions (p = 1) for the knot vector composed of 11 knots
T={T}%=1{0,0,1,2 3,4, 5 6,7, 8 8} produce eight elements (eight non-zero
knot spans) as shown in Fig. . O

Figure 5.11: Nine B-spline linear basis functions. See view_bspline.py and linear_expanded.json on

SAND2022-to-come 2022-05-24

https://github.com/sandialabs/sibl

5.5. NON-UNIFORM KNOT VECTORS 91

Example 18.

The nine B-spline quadratic basis functions (p = 2) for the knot vector composed of 12 knots
T={T;}1,={0,0,0,1,2, 3, 4,5, 6,7, 7, 7} produce seven elements (seven non-zero
knot spans) as shown in Fig. . d

Figure 5.12: Nine B-spline quadratic basis functions. See view_bspline.py and quadratic_expanded.json

on

SAND2022-to-come 2022-05-24

https://github.com/sandialabs/sibl

5.5. NON-UNIFORM KNOT VECTORS 92

Example 19.

The bases for the periodic sections of the B-spline quadratic basis functions (p = 2) in the
previous example (from element 1 to element 5), can be obtained from reformulation of the
Bézier quadratic bases functions. Recall the Bézier quadratic curve, which used three basis
functions to interpolate three controls, took the form:

C*(t) = Bi(t)Po + Bi(t)P1 + B3(t) P, GRL))
= (1 —1t)*Py+2(1 — t)tPy + t* Py, (5.20)
The periodic quadratic B-spline basis functions, shown in Fig. and called the periodic

modified quadratic Bézier basis functions, split the quadratic Bézier beginning and
ending functions into two, and lets each half be weighted by center control point P; as follows:

C2(t) = N2(t)Py + N2(t) Py + NZ(t) Py, (5.21)
1 1 1 1
= 5(1 —t)’ Py + (5(1 — 4 -2 —) 5152) P+ §t2P2. (5.22)
. 1 -2 1 t2
=2 (Py P Py) |2 21 £y (5.23)
contr(;,points 1 0 0 1
curve dependent ~

Vv
curve independent

Note the matrix is non-symmetric. For the Bézier, the matrix was symmetric. [

SAND2022-to-come 2022-05-24

5.5. NON-UNIFORM KNOT VECTORS 93

Figure 5.13: Periodic modified quadratic Bézier basis functions to recover periodic quadratic B-spline bases.
See plot_periodic_bspline basis p2.py on

SAND2022-to-come 2022-05-24

https://github.com/sandialabs/sibl

5.5. NON-UNIFORM KNOT VECTORS 94

Example 20.

The bases for the open (non-periodic) sections of the B-spline quadratic basis functions (p = 2)
in the previous examples (element 0, and by symmetry, element 6), can be obtained from
reformulation of the Bézier quadratic bases functions. Using the results from the previous
example, we simply give back the one-half portion from the middle basis function to the first
or the last basis function, to open the first or the last section of the spline. Recall the Bézier
quadratic curve, which used three basis functions to interpolate three controls, took the form:

C*(t) = B2(t)Py + Bi(t)Py + Bi(t)Ps, (5.24)
= (1 —1t)*Py+2(1 — t)tPy + t*Py. (5.25)
The first open (non-periodic) quadratic B-spline basis function, shown in Fig. , splits the

quadratic Bézier ending function, B3(t) into two parts, and moves one of the half-parts to center
control point P; as follows:

C%(t) = N2(t)Py + N2(t) Py + N2(t) P, (5.26)
1 1
= (1—1t)2Py+ <2(1 —t)t + §t2> P+ 5t"’Pg. (5.27)

These will be referred to as the left-open, right-periodic modified quadratic Bézier
basis functions. Note that the first basis, Ng, will fully interpolate P, at t = 0, where the
other two bases go to zero. Control point P; will be most influenced by Nf just after the
mid-interval. Control point P will equally influenced by N2 and N2 at t = 1. O

SAND2022-to-come 2022-05-24

5.5. NON-UNIFORM KNOT VECTORS 95

Figure 5.14: Left-open, right-periodic modified quadratic Bézier basis functions to recover first open (non-
periodic) quadratic B-spline bases. See plot_open bspline basis p2.py on

SAND2022-to-come 2022-05-24

https://github.com/sandialabs/sibl

5.5. NON-UNIFORM KNOT VECTORS 96

Example 21.

The nine B-spline cubic basis functions (p = 3) for the knot vector composed of 13 knots
T={T;}2,={0,0,0,0, 1,2, 3, 4,5, 6, 6, 6, 6} produce six elements (six non-zero
knot spans) as shown in Fig. . d

Figure 5.15: Nine B-spline cubic basis functions. See view bspline.py and cubic_expanded.json on

SAND2022-to-come 2022-05-24

https://github.com/sandialabs/sibl

5.5. NON-UNIFORM KNOT VECTORS 97

Example 22.

The nine B-spline quartic basis functions (p = 4) for the knot vector composed of 14 knots
T={T}23,={00 0,0 0,1,2 3, 4,5 5, 5 5 5} produce five elements (five
non-zero knot spans) as shown in Fig. . d

Figure 5.16: Nine B-spline quartic basis functions. See view _bspline.py and quartic_expanded.json on

SAND2022-to-come 2022-05-24

https://github.com/sandialabs/sibl

5.5. NON-UNIFORM KNOT VECTORS 98

5.5.2 Recovery of Bézier Basis Functions

Bézier basis functions of degree p derive from B-spline basis functions that have knot vectors
of the form

T={0,...,0,1, ..., 1} (5.28)
le le
Table shows concrete examples of knot vectors for the linear, quadratic, cubic, and
quartic cases. Figures through illustrate these cases graphically.

Table 5.1: Knot vectors for B-spline bases to recover Bézier bases.

degree knot vector T
p=1 {0,0,1, 1}

p= {0,0,0,1,1, 1}
= {0,0,0,0,1, 1,1, 1}

p=4 {0,0,0,0,0,1,1, 1,1, 1}

SAND2022-to-come 2022-05-24

5.5. NON-UNIFORM KNOT VECTORS 99

Example 23.

Recovery of Bézier linear basis as a special case (Fig.).

The two Bézier linear (p = 1) basis functions {B}}_, are obtained as a special case of the
B-spline linear basis functions {N}}1_, when the knot vector T = {T,;}2., = {0, 0, 1, 1 }.
L

Figure 5.17: Recovery of Bézier linear basis functions from B-spline linear basis functions. See

view_bspline.py and recover_bezier_linear.json on

SAND2022-to-come 2022-05-24

https://github.com/sandialabs/sibl

5.5. NON-UNIFORM KNOT VECTORS 100

Example 24.

Recovery of Bézier quadratic basis as a special case (Fig.)}

The three Bézier quadratic (p = 2) basis functions {B?}2, are obtained as a special case
of the B-spline quadratic basis functions {N?}2, when the knot vector T = {T;}_, =
£0,0,0,1,1,1}. O

Figure 5.18: Recovery of Bézier quadratic basis functions from B-spline quadratic basis functions. See

view_bspline.py and recover_bezier_quadratic.json on

SAND2022-to-come 2022-05-24

https://github.com/sandialabs/sibl

5.5. NON-UNIFORM KNOT VECTORS 101

Example 25.

Recovery of Bézier cubic basis as a special case (Fig.)

The four Bézier cubic (p = 3) basis functions { B}}3_, are obtained as a special case of the B-
spline cubic basis functions { N?}2_, when the knot vector T = {T;}"_, = {0, 0, 0, 0, 1, 1, 1, 1 }.
L

Figure 5.19: Recovery of Bézier cubic basis functions from B-spline cubic basis functions. See

view_bspline.py and recover_bezier_cubic. json on

SAND2022-to-come 2022-05-24

https://github.com/sandialabs/sibl

5.5. NON-UNIFORM KNOT VECTORS 102

Example 26.

Recovery of Bézier quartic basis as a special case (Fig.).

The five Bézier quartic (p = 4) basis functions { B}}{_, are obtained as a special case of the B-

spline quartic basis functions { N}?_; when the knot vector T = {T;}?_, = {0, 0, 0, 0, 0, 1, 1, 1, 1, 1 }.
L

Figure 5.20: Recovery of Bézier quartic basis functions from B-spline quartic basis functions. See

view_bspline.py and recover_bezier _quartic.json on

SAND2022-to-come 2022-05-24

https://github.com/sandialabs/sibl

5.5. NON-UNIFORM KNOT VECTORS 103

Remark 5.5.6. Local Support
One important distinction: normalized basis functions of B-splines have local support;
whereas, Bernstein polynomial basis of Béziers do not have local support.

For the B-spline basis, a single basis function is zero except for the spans over which
it is defined as non-zero. Moving a knot, accomplished by changing its value, will modify
only the bases that use that particular knot in a non-zero sense; all other bases remain
unchanged. This is easy to conceptualize through study of Figure = ', were a single knot
value increased or decreased.

In contrast, for the Bernstein polynomials, contributions from each basis function span
the entire parameter domain. Bernstein polynomials provide global support, not local
support.

Local support will be shown to be advantageous because a local modification to the
curves, surfaces, and volumes created by B-splines will not alter the entire geometry; it

only causes changes locally.

SAND2022-to-come 2022-05-24

5.5. NON-UNIFORM KNOT VECTORS 104

5.5.3 Repeated Knot Values In General

Example 27.

The eight B-spline quadratic basis functions (p = 2) for the knot vector composed of 11 knots
T={T;}}°%={0,0,0,1, 2, 3, 4, 4, 5, 5, 5} produce five elements (five non-zero knot
spans) as shown in Fig. . These basese are used to contruct the B-spline curve in Fig.

O]

Lo NN

=

2
4
2
5

N2
N§

o O

STV

Figure 5.21: Reproduction of | | Figure 2.5 (and | | Figure 2.6). See
view_bspline.py and Cottrell Fig2p5.json on

SAND2022-to-come 2022-05-24

https://github.com/sandialabs/sibl

5.5. NON-UNIFORM KNOT VECTORS 105

Example 28.

Reproduction of |] Figure 2.6:

The 15 B-spline quartic basis functions (p = 4) for the knot vector composed of 20 knots
T={T,}}2,={0,0,0,0,0, 1,2 2 3, 3,3, 4,4, 4,4, 5 5 5 5, 5} produce five
elements (five non-zero knot spans) as shown in Fig. g

Figure 5.22: Reproduction of | | Figure 2.6. See view bspline.py and

Cottrell Fig2p6.json on

SAND2022-to-come 2022-05-24

https://github.com/sandialabs/sibl

5.5. NON-UNIFORM KNOT VECTORS 106

5.5.4 Repeated Knot Values and Non-Zero, Non-Uniform Knot
Spans

Example 29.

Reproduction of | | Figure 2.12:

The seven B-spline cubic basis functions (p = 3) for the knot vector composed of 11 knots
T={T,}1%=1{0,0,0,0, 1, 5 6,8, 8 8 8} produce four elements (four non-zero knot
spans) as shown in Fig. . O

Figure 5.23: Reproduction of |] Figure 2.12. See view bspline.py and

Piegl Fig2pl2. json on

SAND2022-to-come 2022-05-24

https://github.com/sandialabs/sibl

Chapter 6

B-Spline Curves

6.1 General Form

The general form of a degree p (p > 0) B-spline curve CP(t) defined by (n + 1) control
points {P;}! , is given by

cr)2 Y NP() P;, forteRC [Ty, Ti], (6.1)
=l

where NP (t) is a B-spline basis function of degree p, defined in (7 0) and (©), and ¢ is
a real number parameter bounded by the endpoints of the knot vector (see (7.7) and (©.7)).

107

6.2. KNOT DEPENDENCE ON DEGREE AND CONTROL POINTS 108

6.2 Knot Dependence on Degree and Control Points

An open B-spline basis function of degree p
with (n + 1) control points will require
(I) knot spans and thus (I + 1) knots, where

I=p+n+1.
Equivalently,
I+1) = +1) + + 1 6.2
() (p+1) + (n+1) (6.2)
knots degree + 1 # control points
Thus,

(# knots) = (degree + 1) + (# control points)
(# knots) (order) 4+ (# control points)

SAND2022-to-come 2022-05-24

6.3. VERIFICATIONS 109

Table 6.1: Requirements for number of knot spans, given a B-spline of degree p, up to cubic (p = 3), and
number of control points (n + 1).

control knot knot parameter
degree points (n+1) | spans m vector span
p=20 P, 1 1 {To, Ty } t €Ty, Tq)
p=1 Py, P, 2 3 {To, T1, T2, T3 } t €Ty, T3)
p=2 Py, P, P, 3 5 {To,T1, T2, T3, Ty, T5 } t €Ty Ts)
p=3 | Py, Py, Py, Ps 4 7 {To, T, To, T3, Ty, T5, T, T7 } | ¢ € [T, T7)

6.3 Verifications

Following are several examples that have been used as verification of the
on €) GitHub. Knots are evaluated and shown along the B-spline curve. In the case of

repeated knots, only the first knot index is indicated.

SAND2022-to-come 2022-05-24

https://github.com/sandialabs/sibl

6.3. VERIFICATIONS 110

Example 30.
A cubic (p = 3) Bézier curve (Fig. © 1) is a special case of a cubic B-spline curve (see basis
functions and knot vector) with knot vector composed of eight knots T = {T,}"_, =

{0,0,0,0, 1, 1, 1, 1 } (cyan circles), a single element (one non-zero knot span), and four
control points {P;}3_, = { (0,0), (0.6,1.6), (2.1,1.9), (3,0) } (red circles). [
2.0

Figure 6.1: Reproduction of |] Figure 3.1. See view bspline.py and
Piegl Fig3pl.json on

SAND2022-to-come 2022-05-24

https://github.com/sandialabs/sibl

6.3. VERIFICATIONS 111

Example 31.

A cubic (p = 3) B-spline curve (Fig. ©) with knot vector composed of 11 knots T = {T,;}1%, =
{0, 0, 0, 0, 025, 0.50, 0.75, 1, 1, 1, 1 } (cyan circles), four elements (four non-zero knot
spans), and seven control points {P;}¢ , = {(-14,0), (0,0), (0,13), (15,13), (20, —1.5),
(9, —10), (0,—5) } (red circles). [

Figure 6.2: Reproduction of |] Figure 3.2. See view bspline.py and
Piegl Fig3p2.json on

SAND2022-to-come 2022-05-24

https://github.com/sandialabs/sibl

6.3. VERIFICATIONS 112

Example 32.

A quadratic (p = 2) B-spline curve (Fig. ©) with knot vector composed of 11 knots
T={T,}1%={0,0,0,1,2 3,4,4,5 5 5} (cyan circles), five elements (five non-zero
knot spans), and eight control points {P;}”_, = {(0,1), (1,0), (2,0), (2,2), (4,2), (5,4),
(2,5), (1,3) } (red circles). O

Figure 6.3: Reproduction of |] Figure 2.20. See view bspline.py and
Cottrell Fig2p20. json on

SAND2022-to-come 2022-05-24

https://github.com/sandialabs/sibl

6.3. VERIFICATIONS 113

Example 33.

A quartic (p = 4) B-spline curve (Fig. © %) with knot vector composed of 14 knots
T={T.}2 ={0 0,0 0,0, 02 04, 06, 0.8, 1, 1, 1, 1, 1 } (cyan circles), five
elements (five non-zero knot spans), and nine control points {P;}? , = { (5,10), (15,25),
(30,30), (45,5), (55,5), (70,40), (60,60), (35,60), (20,40) } (red circles). O

Figure 6.4: Reproduction of |] . See view bspline.py and

Bingol_2D_curve. json on

SAND2022-to-come 2022-05-24

https://nurbs-python.readthedocs.io/en/latest/visualization.html#curves
https://github.com/sandialabs/sibl

6.4. ADDITIONAL EXAMPLES 114

6.4 Additional Examples

Example 34.

A quadratic (p = 2) B-spline curve (Fig. ©. ") with knot vector composed of 12 knots
T={T.},={0,00,1,2 3,4, 5 6,7 7, 7} (cyan circles), seven elements (seven
non-zero knot spans), and nine control points { P;}%_, = { (1,0), (1,1), (0, 1), (=1,1), (—1,0),
(—=1,—1), (0,—1), (1,—1), (1,0) } (red circles). Note the asymmetry about the x = 0 axis,
caused by the open knot vector's repeated knots, beginning and end. [

-1.5
-1.5 -1.0 -0.5

Figure 6.5: See view bspline.py and circle_curve_ 9 points.json on

SAND2022-to-come 2022-05-24

https://github.com/sandialabs/sibl

6.4. ADDITIONAL EXAMPLES 1)

Example 35.

A periodic modified quadratic (p = 2) Bézier curve (Fig. © ©) with eight elements, labeled (0)
to (7), and eight control points {P;}7_, = { (1,0), (1,1), (0,1), (—=1,1), (—=1,0), (=1, 1),
(0,-1), (1,-1) }. O

Figure 6.6: See plot modified bezier.py and circle-points.csv on

SAND2022-to-come 2022-05-24

https://github.com/sandialabs/sibl

6.4. ADDITIONAL EXAMPLES 116

Example 36.
A periodic modified linear (p = 1) Bézier curve (Fig. © /) with eight elements, labeled (0) to (7),
and eight control points {P;}"_, = { (1,0), (1,1), (0,1), (=1,1), (=1,0), (=1, -1), (0,—1),
(1,-1)}. O

[
[
[
[
T
[
[
[
[
|

Figure 6.7: See plot modified bezier.py and circle-points.csv on

SAND2022-to-come 2022-05-24

https://github.com/sandialabs/sibl

Chapter 7

Curves from Sample Points

In this chapter, we demonstrate how to create B-Spline curve with a priori unknown control
points from a set of known data points, sampled from an arbitrary curve.

e In prior chapters, we used a set of (n+1) known control points { P;}7, = { i, vi, 2zi }1y
to generate a curve C(t) composed of points in space { z(t), (y)t, z(¢) }, parameter-
ized by pseudo-time ¢t € [Ty, Tz].

e Now we do the inverse problem: We use a set of (s+1) known data points { IT; }§_, =
{ o, Br, i }i—, sampled at (unknown) time 74, € [79, 7, | that lie on or near a curve
C(7) generated from (n + 1) unknown control points {PY" o = { Z;, %, % }7. The
generated curve will fit to the given sampled points, up to some error tolerance.

117

7.1. DEVELOPMENT OF A CURVE FIT METHODOLOGY 118

7.1 Development of a Curve Fit Methodology

[] described two methodologies, interpolation and approxima-
tion, to solve the inverse problem.
e Interpolation satisfies the sample data precisely, and leads to equation solving of a
square matrix of dimension (n + 1) x (n + 1).
e Approximation does not necessarily satisfy the sample data precisely, and leads to
least-squares equation solving from an over-constrained matrix of dimension (s+ 1) x
(n+ 1), where s > n, described by |] and | .
In the present work, we develop a curve fit methodology based on approzimation, and
present interpolation as a special case (i.e., when s = n). We denote (s + 1) to be the

number of sample points. We denote (n + 1) to be the number of control points.

LAt 361.

SAND2022-to-come 2022-05-24

7.1. DEVELOPMENT OF A CURVE FIT METHODOLOGY 119

7.1.1 Sample Points and Control Points Relationship

Let the set of (s+ 1) sample points { IT; };_, have coordinates { au, Bk, 7 }i_, measured
at psuedo-time 7, € [79, 75 |. Imagine each sample point satisfies the B-spline curve

equation (/) of degree p with (n + 1) control points such that
{ a(r), B(7), v(1) } =CP(r ZNP P;. forr € R C [7, 75] (7.1)

At discrete sample times, the foregoing equation can be expanded as

ag Bo Yo No(m) Ni(mo) -+ Nyp(m0) " %0 G0 o]
0 Yo 20
ar B m No(m1) Ni(m) -+ Np(m) % G 5
a P2 v2 | = | No(m) Ni(r2) -+ Nu(m) o ®)
. S . | :’ian gn gn]
g Bs e N()(TS) Nl(Ts) U Nn(Ts) N -~ -
= = N ~ - (n+1) X nsd
(s+1) x nsd (s+1) x (nx1)

The number of knots, (I + 1), remains a function of the basis function degree and the
number of control points through Eq. (¢ 7). Open knot vectors are used, so the knot vector
maintains the form in Eq. (7 7). For convenience, we set 7p = 0 and 7, = 1. Thus
ngngOandTI:TS:I.

2For brevity, the degree p of the basis functions is omitted. Thus, NP (¢) is simply N;(t), where p is a given input.

SAND2022-to-come 2022-05-24

7.1. DEVELOPMENT OF A CURVE FIT METHODOLOGY 120

The number of space dimensions, indicated as nsd, is typically two or three for 2D or
3D, respectively. We refer to the (s+ 1) x (n 4 1) matrix as the sample basis matrix N,
since it represents evaluation of the B-spline normalized basis functions at sample times 7.

Taking each space dimension in isolation, the foregoing equation for x-axis data can be

written as,
[ag) [No(19) Ni(7o) Ny(70) | 5
0
o No(m1) Ni(m) -+ Nyp(n) ;
1
{ as p = | No(me) Ni(m) Ny (72 S . 0 (7.3)
. \ i‘n J
L g) i N()(TS) Nl(TS) Nn(Ts) | N - ,
\ - N 7 dim(X)=(n+1) x 1
dim(a):(rs+1) X 1 dim(N):(;Jfl) x (nx1) e
or simply,
a=Nz. (7.4)

Respectively, for y-axis and z-axis data, these equations are
B=Nyg, and ~=N 2. (7.5)

The N matrix depends on the pseudo-time parameter data 7 = { 7 }7_,.

SAND2022-to-come 2022-05-24

7.1. DEVELOPMENT OF A CURVE FIT METHODOLOGY 121

How do we construct the interior sample times? Several strategies exist. The most
simple strategy is to assume equally spaced time parameter intervals for each of the
(s + 1) sample points, thus
1 2 3 S

87

1
=10, - =-10,1, 2 3, ... : 7.6
T { 787 S’ 78} S{)))) 78} ()

This strategy is not recommended for the interpolation case, as explained below.

7.1.2 The Interpolation Special Case (s =n)

For the case where the number of sample points equals the number of control points, i.e.,
(s+1)=(n+1),]|] do not recommend the equally spaced time
parameter method (7 () because it “can produce erratic shapes (such as loops) when the
[sample point| data is unevenly spaced.” They recommend two alternative methods. The
first alternative, the chord length method, creates the following sample times from

successive sample point distances:

7'0:0,
I, — 11,
Tk:kal—F‘ i c kl‘,forkzl,...,(n—l), (7.7)
Tn = 1,
3At 364.

SAND2022-to-come 2022-05-24

7.1. DEVELOPMENT OF A CURVE FIT METHODOLOGY 122

where the total chord length C' as is defined as

n
A
C=) |, — T . (7.8)
k=1
The physical interpretation of this method is constant velocity: That is, the pseudo-time
interval scales directly with the distance between sample points. This can be seen readily

by rearranging (),

11, — 11, change in position
C:| k k1| B g p

= velocity. 7.9
Tk — Tk—1 change in time Y (7.9)

The value of C' is the total chord length, which is constant for a given set of sample points.
The second alternative method, the centripetal method, modifies (1 /) and () with

a square root,

7'0:0,)
11, — I,
Tk:Tk—l—F\/‘ kD kl’,forkzl,...,(n—l), . yan)
Tn = 1,
J
where
A n
D= V| — T . (7.11)
k=1

SAND2022-to-come 2022-05-24

7.1. DEVELOPMENT OF A CURVE FIT METHODOLOGY 123

The square root amplifies distances per unit characteristic length when the sample
interval distance gets small (approaches zero), making it suited for sample data with “very
sharp turns.”|]

Next we turn our attention to the knot vectors. The most elementary method is to use

equally spaced knots,

To=:.-=T, =0,
.) forj=1,....(n—p), b (7.12)
Pt n+ 1 — p7 9 9 9

TI—p = = TI = 1)
The following example illustrates how the equally spaced space knots strategy in ()
leads to recovery of the knot vectors used in Figures. through
Example 37.
Equally spaced knots. Revisiting the examples shown in as shown in Figures. through :

we demonstrate how the foregoing equations would produce equally spaced knot vectors. Here
number of sample points (s + 1) is set equal to the number of control points (n + 1), which is
nine for all cases (thus s =n = 8). Equation (©) is used to determine the number of knots.

1At 365.

SAND2022-to-come 2022-05-24

7.1. DEVELOPMENT OF A CURVE FIT METHODOLOGY 124

Fig. | degree | # knots knots
+# P (I+1) To,..., Tt
1 11 To=T,=0, To=Ty=1,
Ty =j/8forj=1,...,7
2 12 To=T1 =Ty =0, To=Ty=T1n=1,
Topj=j/Tlor j=1,...,6
3 13 To=Ti=Ty=T3=0, To=Tip=T11 =T =1,
Tayj=j/6forj=1,....,5
4 14 To=T1=Te=T3=T4=0, Tog=Typ=Tyu=Tp=Tz=1,
Tej=j/5forj=1,...,4

SAND2022-to-come 2022-05-24

7.1. DEVELOPMENT OF A CURVE FIT METHODOLOGY 125

|] recommend against use of equally spaced knots, which can lead
to a singular N matrix (7) when used with either the chord length method (7) or the
centripetal method (). Instead, they recommend use of a so-called averaging method,

Ty = =T, =0,
1p*1+j
Tp+j:1_7 Z T, for j=1,...,(n—p), (7.13)
i=j
TI—p — — TI — 1)
5At 365.

SAND2022-to-come 2022-05-24

7.1. DEVELOPMENT OF A CURVE FIT METHODOLOGY 126

Example 38.

Averaging knots. Revisiting the examples shown in as shown in Figures. through

we demonstrate evaluation of the knot vectors based on the averaging knots scheme in (7 1 2).
Again, the number of sample points (s+ 1) is set equal to the number of control points (n+ 1),
which is nine for all cases (thus s = n = 8). The sample time vector is T = {7 };_, = {7 }5_o-

Fig. | degree | # knots knots
+# P (I+1) To, ..., T
1 11 To=T:=0, To=Tiyp=1,
To=m, Tg=m, Ty=m13, ..., Tg=1
2 12 To=T1 =Ty =0, To=Ti=T11 =1,
ng%(71+72),T4:%(72—|—73),...,ng%(Tﬁ—l—ﬁ)
3 13 To=Ti=Ty=T3=0, To=Tip=T1n =T =1,
T4:%(71—|—7'2—|—7'3),
T5:%(7’2+7'3—|—7'4),...,
ng%(75+76+77)
4 Il To=Ti=Te=T3=T,=0, To=Typ=Tyu=Tp="Ts=1,
Ts=32(m+n+m+7),
Tﬁzi(72+73+74+7-5),...7
TS:%L(T4+7'5+7'6+7'7)

L

SAND2022-to-come 2022-05-24

7.1. DEVELOPMENT OF A CURVE FIT METHODOLOGY 127

Example 39.
Interpolation of five 2D points, {P;}%, = { (0,0), (3,4), (—1,4), (—4,0), (—4, —3) } (orange
‘+' with diamond outline) using a cubic (p = 3) B-spline curve. [

Figure 7.1: Reproduction of | | Example 9.1. on GitHub.

SAND2022-to-come 2022-05-24

https://github.com/sandialabs/sibl

7.1. DEVELOPMENT OF A CURVE FIT METHODOLOGY 128

7.1.3 The Approximation General Case (s > n)

See |], “Least Squares Curve Approximation” pages 410-412 for de-

tails.

SAND2022-to-come 2022-05-24

Chapter 8

NURBS

Prior to defining the B-spline basis functions, we examined uniform knot vectors in Sec-
tion and then compared these to non-uniform knot vectors in Section © . In this chap-

ter, we start with the open knot vector (non-periodic, non-uniform), previously described
in (5.18),
T={T4....T0, Toiq, ..., Top1, Tp,..., Ty 1}, 8.1
{ g I ptl p—1, b b } ()
p+1 p+1

as our knot vector of choice. With this non-uniform knot vector, we create the original
B-spline basis function N”(¢) in combination with positive weighting constants to give a
new rational basis function RY(t).

Conceptually, we will weight a single B-spline basis function by a positive number and

129

130

then normalize this weighted B-spline quantity by the inner product of all original basis
functions with all their respective weights. This creates a rational basis function. Mathe-

matically, we define the i'" rational basis function as

]

> ko Ni(8) wi’

where N/ (t) and N (t) denote a B-spline normalized basis function defined in (*) through

RI(t) for w; € RT,wy € RT (8.2)

(7.0), and all weights w; and {wy}}_, are positive, real numbers.
The combination of the non-uniform knot vector and the rational basis functions gives
rise to the NURB acronym, non-uniform, rational B-spline. We define the NURB curve as

cr)2Y R P;, forteRC [Ty, Til, CE)
1=0

where {P;}" , are the (n + 1) control points. Compare the form of (*) to the form of

(9.7).

SAND2022-to-come 2022-05-24

Chapter 9

B-Spline Surfaces and Volumes

The B-Spline formulation for curves can be generalized to surfaces and volumes. Let the

following knot vectors be defined as

T={To....Ta, Tpi1, .o, Tr—p1, Toy..., Ty }, (9.1)
p+1 p+1

U={Us....Us, Ugs, ..., Us_g1, Uy Uy), (9.2)
q+1 q+1

V={V.....Va, Vist, ..., Vicr1, Vi, ...,V }. (9.3)
r+1 r+1

131

9.1. KNOT DEPENDENCE ON DEGREE AND CONTROL POINTS 132

9.1 Knot Dependence on Degree and Control Points

A B-spline basis function of degree p, ¢, and r with (n + 1), (m + 1), and ([+ 1) control
points will require I, J, and K knot spans and thus (I+1), (J+1), and (K+ 1) knots, where

I=p+n+1, (9.4)
J=q+m+1,
K=r+1+1. (9.6)

The number of knots has dependence on degree and control points as stated in Table

Table 9.1: Knot number dependence on degree and control points.

(# knots) = (degree + 1) 4+ (# control points)
(# knots) = (order) + (# control points)
(I+1) = (»+1) + (n+1)
J+1) = (g+1) + (m+1)
K+1) = (r+1) + (I+1)

SAND2022-to-come 2022-05-24

9.2. GENERALIZED B-SPLINES GEOMETRIES 133

9.2 Generalized B-Splines Geometries

Then with the control points (generally in 3D) P;(z,y,2), P, (z,y,), and P; ;i(x,y, 2),
arranged into a collection (array in 1D, net/grid in 2D, lattice in 3D) to describe a B-Spline

object in 1D, 2D, and 3D, respectively, the B-Spline curve, surface, and volume are defined

as
) 2SN P, (97)
=l
sPa(t,u) 23 ST N (1) Ni(u) Py, (9.8)
i=0 j=0
n m l
VP (tu,0) £33 S NP(E) N(u) Ni(v) P, (9.9)
i=0 j=0 k=0
for
teR C [Ta; Tb]n <910)
u€eRC [Ua; Ub]a (911)
vERC [V, Vil @)

SAND2022-to-come 2022-05-24

9.2. GENERALIZED B-SPLINES GEOMETRIES 134

Example 40.

B-Spline surface construction. Twelve 3D control points, [{ P;; }7_, |7, organized into
a control net shown in Table © 7, with (n + 1) = 4 control points for the ¢ parameter and
(m + 1) = 3 control points for the u parameter. A cubic (p = 3) B-spline curve is used for the
t parameter space. A quadratic (¢ = 2) B-spline curve is used for the u parameter space. Thus,

the number of knots is

I+)=@p+1)+n+1)=B+1)+4) =8, CRE)
J+1)=(@+1)+(m+1)=(2+1)+(3) =6, (9.14)

and the knot vectors are

T={0,000,1,1,1, 1} (9.15)
pHi=d pHi=d
U=1{000,1 1, 1}. (9.16)

N~ =
g+1=3 ¢+1=3

Note that the structure of these B-spline knot vectors recovers a Bézier surface patch (see
Eq.). O

SAND2022-to-come 2022-05-24

9.2. GENERALIZED B-SPLINES GEOMETRIES 135

Table 9.2: Control points P; ;(z,y, z), arranged into a control net.

7=0 5 =1] =2
=0 (0,0,0) (0,4,0) (0,8,-3)
=1 (2,0,6) (2,4,0) (2,8,0)
=2 (4,0,0) (4,4,0) (4,8,3)
=3 (6,0,0) (6,4,-3) (6,8,0)

SAND2022-to-come 2022-05-24

9.2. GENERALIZED B-SPLINES GEOMETRIES 136

Figure 9.1: Twelve control points, located at their (x,y, z) coordinates listed in Table ' . Reproduction of
|] 3D surface. on GitHub.

SAND2022-to-come 2022-05-24

https://github.com/sandialabs/sibl

9.2. GENERALIZED B-SPLINES GEOMETRIES 137

Figure 9.2: Continued from previous figure. Single B-spline surface control net, connecting the twelve control
points.

SAND2022-to-come 2022-05-24

9.2. GENERALIZED B-SPLINES GEOMETRIES 138

Figure 9.3: Continued from previous figure. Single B-spline surface patch, with a single bisection evaluation
(2! = 2 evaluation intervals) of the knot vectors T and U.

SAND2022-to-come 2022-05-24

9.2. GENERALIZED B-SPLINES GEOMETRIES 139

Figure 9.4: Continued from previous figure. Single B-spline surface patch, with four bisection evaluations

(2% = 16 evaluation intervals) of the knot vectors T and U.

SAND2022-to-come 2022-05-24

9.3. SHAPE PRIMITIVES 140

9.3 Shape Primitives

SAND2022-to-come 2022-05-24

9.3. SHAPE PRIMITIVES 141

Figure 9.5: Recovery of the first Bézier bi-linear shape function. Red circles are control points. Blue dots are

surface evaluation points. Source code bspline _surface Bezier_recovery.py on

SAND2022-to-come 2022-05-24

https://github.com/sandialabs/sibl

9.3. SHAPE PRIMITIVES 142

Figure 9.6: A tri-linear cube composed of six bi-linear surfaces. Red circles are control points. Blue dots are

surface evaluation points. Source code bspline _surface_cube_linear.py on

SAND2022-to-come 2022-05-24

https://github.com/sandialabs/sibl

9.3. SHAPE PRIMITIVES 143

Figure 9.7: A tri-quadratic cube composed of six bi-quadratic surfaces. Red circles are control points. Blue

dots are surface evaluation points. Source code bspline_surface_cube _quadratic.py on

SAND2022-to-come 2022-05-24

https://github.com/sandialabs/sibl

9.3. SHAPE PRIMITIVES 144

Figure 9.8: Transformation of a bi-quadratic surface (z = 0) into a bi-quadratic quarter-cylinder end cap
(x = 3) using (0,y,0) control point coalescence to (0,0,0) and perimeter control point rebalancing. Source
code bspline_surface_quad2tri_quadratic.py on

SAND2022-to-come 2022-05-24

https://github.com/sandialabs/sibl

9.3. SHAPE PRIMITIVES 145

Figure 9.9: Continued from the previous figure. Planar view sequence of transformation from quadrilateral

perimeter to triangular perimeter. Source code bspline_surface_biquad2tri_animation.py on

SAND2022-to-come 2022-05-24

https://github.com/sandialabs/sibl

9.3. SHAPE PRIMITIVES 146

Figure 9.10: A tri-quadratic cylinder composed of three bi-quadratic surfaces. Red circles are control points.

Blue dots are surface evaluation points. Source code bspline surface_qtrcyl _quadratic.py on

SAND2022-to-come 2022-05-24

https://github.com/sandialabs/sibl

9.3. SHAPE PRIMITIVES 147

Figure 9.11: Alternative view of previous figure, a tri-quadratic cylinder.

SAND2022-to-come 2022-05-24

9.3. SHAPE PRIMITIVES 148

Figure 9.12: A tri-quadratic cylinder morphed toward a sphere through pole coalescence. Source code

bspline_surface_qtrcyl2sphere_quadratic.py on

SAND2022-to-come 2022-05-24

https://github.com/sandialabs/sibl

9.3. SHAPE PRIMITIVES 149

Figure 9.13: Alternative view of previous figure, a tri-quadratic cylinder morphing toward a sphere.

SAND2022-to-come 2022-05-24

9.3. SHAPE PRIMITIVES 150

Figure 9.14: Isometric view sequence of transformation from half-cylinder to half-sphere. Source code

bspline_surface_cyl2sphere_animation.py on

SAND2022-to-come 2022-05-24

https://github.com/sandialabs/sibl

Chapter 10

Acknowledgements

We gratefully acknowledge support from the Office of Naval Research (Dr. Timothy Bentley)
under Special Studies grant N0001418IP00054.

151

Bibliography

[Bartels et al., 1995] Bartels, R. H., Beatty, J. C., and Barsky, B. A. (1995). An introduc-

tion to splines for use in computer graphics and geometric modeling. Morgan Kaufmann.

[Bingol and Krishnamurthy, 2019] Bingol, O. R. and Krishnamurthy, A. (2019). NURBS-
Python: An open-source object-oriented NURBS modeling framework in Python. Soft-
wareX, 9:85-94.

[Cottrell et al., 2009] Cottrell, J. A., Hughes, T. J., and Bazilevs, Y. (2009). Isogeometric
analysis: toward integration of CAD and FEA. John Wiley & Sons.

[Eberly, 2020] Eberly, D. (2020). Least-squares fitting of data with b-spline curves.
Geometric Tools, pages 1-5.

152

https://www.geometrictools.com/Documentation/BSplineCurveLeastSquaresFit.pdf
https://www.geometrictools.com/Documentation/BSplineCurveLeastSquaresFit.pdf

BIBLIOGRAPHY 153

[Piegl and Tiller, 1997] Piegl, L. and Tiller, W. (1997). The NURBS book. Springer Science
& Business Media.

[Rogers, 2000] Rogers, D. F. (2000). An introduction to NURBS with historical perspective.
Elsevier.

[Shiach, 2015a] Shiach, J. (2015a). B-splines, mathematics of computer graphics and virtual

environments. accessed March 10, 2020.

[Shiach, 2015b] Shiach, J. (2015b). Bézier curves, mathematics of computer graphics and

virtual environments. accessed March 9, 2020.

SAND2022-to-come 2022-05-24

https://youtu.be/qhQrRCJ-mVg
https://youtu.be/2HvH9cmHbG4

	Introduction to Bézier Geometry
	Bézier Curves
	Bézier Line
	Bézier Quadratic
	de Casteljau's Algorithm
	Bézier Cubic
	Bernstein Polynomials

	Bézier Surfaces
	Bézier Volumes
	Introduction to B-Spline Geometry
	Parameter Space
	Knots, Knot Spans, Knot Vectors
	Uniform Knot Vectors
	Basis Functions
	Non-Uniform Knot Vectors
	Repeated Knot Values at Knot Vector Endpoints
	Recovery of Bézier Basis Functions
	Repeated Knot Values In General
	Repeated Knot Values and Non-Zero, Non-Uniform Knot Spans

	B-Spline Curves
	General Form
	Knot Dependence on Degree and Control Points
	Verifications
	Additional Examples

	Curves from Sample Points
	Development of a Curve Fit Methodology
	Sample Points and Control Points Relationship
	The Interpolation Special Case (s=n)
	The Approximation General Case (s > n)

	NURBS
	B-Spline Surfaces and Volumes
	Knot Dependence on Degree and Control Points
	Generalized B-Splines Geometries
	Shape Primitives

	Acknowledgements

