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Constitutive model calibration can require fewer tests when 
using full-field data, but current inverse methods for such 
calibration have several drawbacks.
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Experimental Data Requirements Example Inverse Methods

Simple Tests

Complex Heterogeneous Tests

Finite Element Method Updating (FEMU):

Virtual Fields Method (VFM):

Tension Notched 
Tension

Compression
Kramer, et. al., IJF, 2019 Robert, et. al., 

J. Strain Anal. Engr. Design, 2012

Jones, et. al., Sandia Report SAND2018-10635, 2018Impact with Round Indenter Tension of “D” Shaped Sheet

Issues:
• Expensive and 

slow
• Hard to map 

surface data to 
FEM mesh

• Hard to use 
more than one 
experiment

• (VFM) Need 
volumetric 
strain data or 
plane-stress / 
sheet-material 
only limitation



Physics-informed neural networks (PINNs) offer a new paradigm 
for constitutive model calibration with full-field data. 
But what are PINNs?
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Non-linear “activation” function

Perceptron – Bioinspired-model 
of neurons in the brain

Weights

Linear Mapping

Neural Network (NN) With Several Layers

Loss Function: Error between 
Training Data and Output to NN

PINN Loss Function: Error between 
Training Data and Output to NN 

and Physics Constraints



PINNs for solid mechanics is a recent advancement.4

Deep Energy Method for
Finite-Strain Hyperelasticity

Nguyen-Thanh et. al., Euro. J. Mechanics A, 2020

PINNs + Deep Energy Method to Resolve Stress 
Concentrations in Finite-Strain Hyperelasticity

Fuhg and Bouklas, J. Comp. Phys., 2022

Beam with Deflection

Forward-Only 
Approach:

Ux Field

DEM PINN

PINN+DEM FEM

Forward-Only 
Approach:

Ux Field for Twisted 
Cuboid

PINNs for Inverse Method for 2D Problems
Haghighat et. al., CMAME 2021

Separate PINN for 
each component of 

2D stress and 
displacement

PINNs for Geometry Defect and Material 
Property Identification in 2D

Zhang et. al. Science, 2022

Shape estimation of PINN (red) vs. FEM (blue) for a 
hyperelastic material with increasing level of PINNs training



Our current PINNs approach uses an energy formulation, 
allowing us to calibrate material models with energy potentials.
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Strain energy Energy due to 
body forces

Energy due to 
surface tractions

Trainable parameters

Craig Hamel, Kevin Long, and Sharlotte Kramer, "Calibrating Constitutive Models with Full Field Data via Physics Informed Neural Networks” 
(Submitted to Strain) https://arxiv.org/abs/2203.16577 



Our PINNs approach to material model calibration utilizes 
heterogenous full-field data and global force data.
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Kinematics Standard shape 
functions for Hex8 

elements

Neural networkDisplacement BC

Total potential energy for time step n

Loss function for potential energy

For inverse problems we have the additional error terms for experimental data
Surface Displacements Global Force

Total loss function

Internal Force Vector



As a validation exercise, our PINNs architecture used in the 
forward problem reasonably approximates forces in the large-
deformation of hyperelastic models as compared to FEM.
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Forward problem code-to-code V&V using 
Gent constitutive model

Forward problem code-to-code V&V using 
Neo-Hookean constitutive model

Internal force fx Internal force fx



Our PINNs inverse method can calibrate polymer models, 
demonstrated by using synthetic heterogeneous full-field 
surface data of large deformation in multiple material models.
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Demonstration of Calibrating Gent Model

Elastomer in tension DIC-Like Data Used

• Specimen is strained to 75% in 
tension with 600 finite elements. 

• DIC-Like Data: The surface 
displacement (front face) and 
global force are extracted from 
FE simulations. 

• Three parameters corresponding 
to the material properties are 
added to the PINN optimizer. 

• The goal is to “learn” the three 
parameters for the Gent 
constitutive model.



Our PINNs inverse method can calibrate polymer models, 
demonstrated by using synthetic heterogeneous full-field 
surface data of large deformation in multiple material models.
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Demonstration of Calibrating Hyperfoam Model

Foam in compression DIC-Like Data Used

• Specimen is strained to -55% in 
tension with 1000 finite elements. 

• The surface displacement (front 
face) and global force are 
extracted from FE simulations. 

• Three parameters corresponding 
to the material properties are 
added to the PINN optimizer. 

• The goal is to “learn” the three 
parameters for the Hyperfoam 
constitutive model.



Our PINNs inverse method has shown promise to calibrate a 
large-deformation Hyperfoam model using experimental data.
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Displacement Data Global Force Data

Here, ~5% of the correlated DIC points are picked 
at random for each image and fed into the PINN 
along with the global force data. 

No interpolation was necessary onto the 
computational grid, and larger/smaller amounts 
of data is not an issue. 



Our PINNs inverse method approach for material model 
calibration overcomes shortcomings of current inverse methods 
that use full-field experimental data.
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FEMU and VFM PINNs

Issues

Computationally expensive and slow

Hard to map surface data to mesh

Hard to use more than one experiment

(VFM) Need volumetric strain data or 
sheet-material only limitation

Restricted to known model forms

Difficult to incorporate experimental 
uncertainty quantification (UQ)

Merits

Moderate computational expense

No need to map surface data to mesh

Extensible to use multiple experiments 
simultaneously

Variable amount of full-field data 
acceptable

Extensible to data-driven models

Readily addresses experimental UQ 
using Bayesian PINNs
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Questions?


