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>, | Constitutive model calibration can require fewer tests when m
using full-field data, but current inverse methods for such
calibration have several drawbacks.

Experimental Data Requirements Example Inverse Methods
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3 I Physics-informed neural networks (PINNs) offer a new paradigm
for constitutive model calibration with full-field data.

But what are PINNs?

Neural Network (NN) With Several Layers
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| PINNs for solid mechanics is a recent advancement.

PINNSs + Deep Energy Method to Resolve Stress
Concentrations in Finite-Strain Hyperelasticity
Fuhg and Bouklasj Comp Phys., 2022
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Deep Energy Method for
Finite-Strain Hyperelasticity
Nguyen-Thanh et. al., Euro. J. Mechanics A, 2020
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I
Our current PINNs approach uses an energy formulation, m

allowing us to calibrate material models with energy potentials.
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Our PINNs approach to material model calibration utilizes
heterogenous full-field data and global force data.
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For inverse problems we have the additional error terms for experimental data
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7

As a validation exercise, our PINNs architecture used in the
forward problem reasonably approximates forces in the large-
deformation of hyperelastic models as compared to FEM.
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Forward problem code-to-code V&YV using
Gent constitutive model
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Forward problem code-to-code V&V using
Neo-Hookean constitutive model
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Material Property

|
Our PINNs inverse method can calibrate polymer models, m
demonstrated by using synthetic heterogeneous full-field

surface data of large deformation in multiple material models.

Demonstration of Calibrating Gent Model

« Specimen is strained to 75% in
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Our PINNs inverse method can calibrate polymer models,
demonstrated by using synthetic heterogeneous full-field
surface data of large deformation in multiple material models.

Demonstration of Calibrating Hyperfoam Model

« Specimen is strained to -55% in
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Material Property

* Three parameters corresponding
to the material properties are l

added to the PINN optimizer.
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large-deformation Hyperfoam model using experimental data.

Displacement Data Global Force Data
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Our PINNs inverse method has shown promise to calibrate a m
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Here, ~5% of the correlated DIC points are picked
at random for each image and fed into the PINN
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Our PINNs inverse method approach for material model
calibration overcomes shortcomings of current inverse methods

that use full-field experimental data.

FEMU and VFM

Computationally expensive and slow

PINNs

Moderate computational expense

Hard to map surface data to mesh

No need to map surface data to mesh

Hard to use more than one experiment

Extensible to use multiple experiments
simultaneously

(VFM) Need volumetric strain data or
sheet-material only limitation

Variable amount of full-field data
acceptable

Restricted to known model forms

Extensible to data-driven models

Difficult to incorporate experimental
uncertainty quantification (UQ)

Readily addresses experimental UQ
using Bayesian PINNs
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