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Motivation: Understanding W material response 
to combined high heat flux /  particle flux

A. Manhard, K. Schmid, et al., J. Nucl. Mater. 415 (2011) S632.

grain growth in ITER W

dispersoid - strengthened W
R. D. Kolasinski, D. A. Buchenauer,et al.,  Int. J. Ref. Met. Hard 

Mat. 60 (2016) 28.

Dispersoid strengthening can improve mechanical 
properties, resiliency of W materials against 
recrystallization / n-damage

• Initial laboratory testing promising, response to 
combined effects in a relevant environment needed

Testing of advanced W materials in DIII-D:
• Materials: ITER W, Dispersoid–strengthened W (W-TiO2, 

W-Ni)

Goals are to quantify:

• Effects of large thermal gradients on surface damage / 
recrystallization.

• Material response to transients
• Preferential sputtering

no annealing 1600 °C1200 °C
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Experimental approach: Divertor Material 
Evaluation System (DiMES) at DIII-D

1600 °C

DiMES
DiMES

DTS

LP

IRTV

DiMES TV

Fast TV

MDS

We used DiMES to expose W samples in the DIII-D 
divertor

• Located near the Outer Strike Point (OSP) of Lower 
Single Null (LSN) plasmas

• Well diagnosed with Langmuir probes, Fast Camera, 
spectroscopy

Approach:

• Angled, protruding samples intercept higher heat flux

• Goal: Exceed sample temperature of 1200 °C needed 
for fast recrystallization

• Thermal analysis to determine sample temperatures
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Plasma conditions in the DIII-D 
divertor

Exposure included 9 H-mode shots in DIII-D

▪ Samples angled 15° relative to surface 

▪ Steady state heat flux on protruding surfaces:
▪ q┴ = 10 – 24 MW/m2

▪ 42 Hz ELMs added significant transient heating

▪ Heat flux, LP, TC meas., and thermal modelling 
used to determine surface temperatures

Observations:

▪ Disruption during first shot due to material 
flaking

▪ WISE spectrometer detected Ti, W impurities

▪ Fast camera captured melting of samples closest 
to strike point (mid-way through exposure)

DiMES
cap

15°particle 
flux

sample

top view

side view
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Top view of DiMES after 9 repeat discharges

strike point location 5 mm

Bt

R

W-TiO2
(flush)

W-TiO2
(angled)

ITER-W
(angled)

ITER-W
(angled)

W-Ni
(angled)

ITER-W
(flush)

calorimeter 

probe

ID # Sample Config Observations

1 ITER W flush Modest sputtering, C deposits

2 W-TiO2 flush Modest sputtering, C deposits

3 ITER W 15° angle Surface  cracking, shallow melting

4 W-TiO2 15° angle Flaking, shallow melting, preferential 

sputtering / evaporation of dispersoid 

material

5 ITER-W 15° angle Significant melting / recrystallization

6 W-Ni 15° angle Significant melting / recrystallization

• Specimens closest to the strike point were more 
severely damaged, melted material appears to flow 
along J × B direction

• Extensive microscopy undertaken to compare ITER-
grade / dispersoid strengthened W

1

2

3

4

5

6
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Significant recrystallization observed 
in both ITER-grade and DSW materials

Melted samples:

▪ Grain size ~ 100 times larger, entire material recrystallized

▪ No clear boundary between the melted / un-melted regions

▪ No obvious differences between ITER-grade / DSW

Un-melted samples:

▪ Changes in microstructure superficial, 
constrained to within ~5 microns of the 
surface

▪ Some deep cracking (up to 100 μm) noted 
in both ITER and dispersoid strengthened 
W

▪ Grain size deeper in material appears 
comparable to unexposed materials (< 1 
μm for W-TiO2, 5 – 10 μm for ITER W)

Consequences: melted / recrystallized 
material is much more brittle

W-Ni
melted

W-TiO2

un-melted

ITER W
un-melted

500 μm

50 μm

50 μm

***note difference in scale

#187181
t = 4.6 s

#187181
t = 4.6 s

Above: temperature distribution 
calculated via SIERRA
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BA 52 Tilt 52 Tilt

Surface flaking / shallow melting altered surface 
morphology of samples farthest from strike point

ITER-W

FIB cuts and tilted imaging reveal surface 
roughening on the order of 10’s of μm

• Considerable sub-surface porosity

• Likely that this arises from repeated 
melting solidification process

• Could have implications for tritium 
inventory

Fast camera view showing flaking of 
material during plasma exposure

A

B

Dispersoid-strengthened W

• Surface melting did not appear as 
severe, even though the specimen 
was closer to the strike point

• Noted significant flaking of material at 
edges of specimen, also observed on 
Fast camera

• Consequences: dust formation, 
contributes to plasma impurities DiMES holder

ejected 
fragments

30 μm 10 μm

A B
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Crack formation observed on all samples but was 
more severe in the dispersoid-strengthened material

• Cracks protruded > 200 μm into the material

• Forms microscopic leading edges where melting can initiate

• Cracking was observed in both materials, though was moderately more severe in the DSW.

• Individual cracks were up to several mm long, ~ 5 μm wide, and formed a continuous 
network across the surface

200 µm

52° Tilt

Leading-edge melting

50 µm

500 µm
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Depletion of dispersoids near the surface alters 
surface composition / changes sputtered impurities

Surface composition analysis:

• Dispersoids appear absent from the 
surface (only empty pits remain.)

• Consistent with TiO2 evaporation / 
sublimated.

• FIB profiling / EDX analysis reveals 
that sub-surface dispersoids present 
at > 2-3 μm (effect is superficial)

• Potential concern for erosion / 
redeposition?

5 µm

FIB profile

Ti Kα

top view
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Dispersoid material has been preferentially 
sputtered / evaporated

• Redeposited material was approximately 1 μm thick, and 
consisted mostly of Ti, W, Ni, and stainless steel 
constituents

• Most material redeposited within a few mm of the sample 
from where it originated.

• Deposits appear enriched with dispersoid material
FIB profile of redeposited layer

5 µm

Bt

R

ITER-W
(angled)

W-TiO2
(angled)
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Features of the melted material

• Unusual surface morphology was observed in the 
melted regions appears to be due to carbide 
formation in the near-surface

• Melted material was drawn in the J x B direction, 
volume of melted material estimated from optical 
profilometry

• Melt process was captured by Fast Camera, analysis of 
melt motion is underway.

10 µm

50 µm
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SMITER estimates higher than expected heat fluxes

Thermal analysis observations

• Strong variation in 𝒒⊥ across 4 angled 
samples for each shot

• Inter-ELM: 11– 24 MW/m2

• Intra-ELM: up to 115 MW/m2

• Samples closest to strike point receive 
higher 𝒒⊥

• Reproduce surface melt temperatures 
on 2 samples closest to strike point

• Bulk sample temperature higher than 
recrystallization temperature for ~3 
seconds

• Supports microscopy results that show 
uniform recrystallization throughout 
sample depth, rather than clear 
transition region 

𝒒⊥ during shot #187181

Post-exposure image of angled W samples
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Maximum q⊥ vs Time for Sample Closest to SP 

187179 187180 187181
(Melting!)

SIERRA Thermal Modeling

#187181
t = 4.6 s

𝑻𝒎𝒂𝒙 = ~𝟑𝟖𝟎𝟎 𝑲

See poster by J. 
Coburn P131(B)
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Concluding remarks

Comparison of ITER-grade and dispersoid strengthened material performance and potential implications: 

• Surface roughening of ITER-grade W was significant → erosion & redeposition

• Significant sub-surface porosity was observed → tritium inventory

• For dispersoid-strengthened materials, oxide-based dispersoids near the surface did not appear to survive 
high temperatures
• More resilient dispersoid materials (e.g. carbides may provide better performance in this regard)

• Surface roughening / melting on dispersoid-strengthened material was lower, but surface cracking was more 
severe.

Melted specimens:

• Flow of melted material in J × B direction

• Source of unusual surface topography appears to be carbide formation

Further work: Follow-up experiments planned for current DIII-D run campaign to test improved materials, 
including tungsten fiber composite / W-TaC, including thermal / melt-motion modelling.
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