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Motivation: Understanding W material response
to combined high heat flux / partlcle qux

Dlspersmd strengthenmg can improve mechanical
properties, resiliency of W materials against
recrystallization / n-damage

- Initial laboratory testing promising, response to
combined effects in a relevant environment needed

Testing of advanced W materials in DIII-D: graln growth in ITERW
. Materials: ITER W, Dispersoid-strengthened W (W-TiO.,, - Manhard, £ Schmid, et . fucl Mater. 415 (2011) 5632
W-Ni) o

Goals are to quantify:

- Effects of large thermal gradients on surface damage /
recrystallization.
- Material response to transients

. Preferential sputtering dispersoid - strengthened W

DIlN-D R. D. Kolasinski, D. A. Buchenauer,et al., Int. J. Ref. Met. Hard
BTN Mat. 60 (2016) 28.




Experimental approach: Divertor Material
Evaluation System (DIMES) at DIII-D

IRTV
DIMES TV
Fast TV
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We used DIMES to expose W samples in the DIII-D
divertor

« Located near the Outer Strike Point (OSP) of Lower
Single Null (LSN) plasmas

« Well diagnosed with Langmuir probes, Fast Camera,
spectroscopy

Approach:

- Angled, protruding samples intercept higher heat flux

« Goal: Exceed sample temperature of 1200 °C needed
for fast recrystallization

« Thermal analysis to determine sample temperatures



Plasma conditions in the DIII-D AT—— angled
divertor SAmples

Exposure included 9 H-mode shots in DIlI-D
= Samples angled 15° relative to surface

= Steady state heat flux on protruding surfaces:
* gL =10 - 24 MW/m?

= 42 Hz ELMs added significant transient heating " flush

= Heat flux, LP, TC meas., and thermal modelling . samples
used to determine surface temperatures ‘-

Observations:

flaking particle

= Disruption during first shot due to material - \
15°
= WISE spectrometer detected Ti, W impurities flux

= Fast camera captured melting of samples closest
to strike point (mid-way through exposure) DIMES sample

cap

side view
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Top view of DIMES after 9 repeat discharges
mm

ITERW flush Modest sputtering, C deposits
2 W-TiO, flush Modest sputtering, C deposits
3 ITERW 15° angle  Surface cracking, shallow melting
4 W-TIO, 15° angle  Flaking, shallow melting, preferential
sputtering / evaporation of dispersoid
material

5 ITER-W 15° angle  Significant melting / recrystallization
6  W-Ni 15° angle  Significant melting / recrystallization

« Specimens closest to the strike point were more
severely damaged, melted material appears to flow
along ] x B direction

« Extensive microscopy undertaken to compare ITER-
grade / dispersoid strengthened W




Significant recrystallization observed pme
in both ITER-grade and DSW materials ks

Melted samples:

= Grain size ~ 100 times larger, entire material recrystallized
= No clear boundary between the melted / un-melted regions
= No obvious differences between ITER-grade / DSW

-
Un-melted samples: -
= Changes in microstructure superficial, -
constrained to within ~5 microns of the | B
surface . ¢
= Some deep cracking (up to 100 pm) noted 6902
in both ITER and dispersoid strengthened "
W
#187181
= @Grain size deeper in material appears 380403
comparable to unexposed materials (< 1 0 g
um for W-TiO,, 5 - 10 um for ITER W) 0 5
E- 2500 o
Consequences: melted / recrystallized I E

material is much more brittle

— 1.5e+03

A DII-D

e Above: temperature distribution
EEEEEEEE calculated via SIERRA




Surface flaking / shallow melting altered surface
morphology of samples farthest from strike point

ITER-W
FIB cuts and tilted imaging reveal surface
roughening on the order of 10's of ym

- Considerable sub-surface porosity

« Likely that this arises from repeated
melting solidification process

« Could have implications for tritium
inventory

. . e & / oo i ejected
Dispersoid-strengthened W G b - fragments
« Surface melting did not appear as - '
severe, even though the specimen
was closer to the strike point

« Noted significant flaking of material at
edges of specimen, also observed on
Fast camera

- Consequences: dust formation,
contributes to plasma impurities

Fast camera view showing flaking of
material during plasma exposure
w) DII-D &P P




Crack formation observed on all samples but was
more severe in the dispersoid-strengthened material

Cracking was observed in both materials, though was moderately more severe in the DSW.

Individual cracks were up to several mm long, ~ 5 pm wide, and formed a continuous
network across the surface

« Cracks protruded > 200 pm into the material
«  Forms microscopic leading edges where melting can initiate

52° Tilt

Leading-edge melting
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Depletion of dispersoids near the surface alters
surface composition / changes sputtered |mpur|t|es

Surface composition analysis:

top view

Dispersoids appear absent from the
surface (only empty pits remain.)

Consistent with TiO, evaporation /

sublimated. FIB proflle
e et o
FIB profiling / EDX analysis reveals UL, o

that sub-surface dispersoids present j ag
at > 2-3 um (effect is superficial)

Potential concern for erosion /
redeposition?




Dispersoid material has been preferentially

m NATIONAL

sputtered / evaporated

e & . C K series W M series Ni K series Fe K series Ti K series Co K series

M S mm

- " ?’;F T e

Redeposited material was approximately 1 um thick, and
consisted mostly of Ti, W, Ni, and stainless steel
constituents

Most material redeposited within a few mm of the sample
from where it originated.

Deposits appear enriched with dispersoid material

FIB profile of redeposited layer
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Features of the melted material

« Unusual surface morphology was observed in the
melted regions appears to be due to carbide
formation in the near-surface

« Melted material was drawn in the J x B direction,
volume of melted material estimated from optical
profilometry

« Melt process was captured by Fast Camera, analysis of
melt motion is underway.
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SMITER estimates higher than expected heat fluxes

Thermal analysis observations q. during shot #187181

SIERRA Thermal Modeling

- Strong variation in q, across 4 angled |1400ms R Eouies i W, e
t=46s

samples for each shot o -
 Inter-ELM: 11- 24 MW/m? g
X
* Intra-ELM: up to 115 MW/m2 I 3000 2
« Samples closest to strike point receive j 250 %
higher q 2000 &
A 1.5e+03
« Reproduce surface melt temperatures ~ny _ i
on 2 samples closest to strike point o | Tmax = ~3800 K

Maximum q, vs Time for Sample Closest to SP

« Bulk sample temperature higher than

w
o

recrystallization temperature for ~3 g;g
seconds 215
«  Supports microscopy results that show EY

uniform recrystallization throughout ® o

1000 2000 3000 4000 5000

time [ms]

sample depth, rather than clear
(Melting!)

transition region -
Post-exposure image of angled W samples —e—187179 ——187180 —e—187181

See poster by J.
Diill-b
Wy Coburn P131(B) 12




Concluding remarks

Comparison of ITER-grade and dispersoid strengthened material performance and potential implications:

« Surface roughening of ITER-grade W was significant > erosion & redeposition
« Significant sub-surface porosity was observed - tritium inventory

« For dispersoid-strengthened materials, oxide-based dispersoids near the surface did not appear to survive
high temperatures

« More resilient dispersoid materials (e.g. carbides may provide better performance in this regard)

« Surface roughening / melting on dispersoid-strengthened material was lower, but surface cracking was more
severe.,

Melted specimens:
* Flow of melted material in ] x B direction
« Source of unusual surface topography appears to be carbide formation

Further work: Follow-up experiments planned for current DIII-D run campaign to test improved materials,
including tungsten fiber composite / W-TaC, including thermal / melt-motion modelling.
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