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Purpose:

• Accurate and precise 
identification of defects in AM 
components

• Assessing the resolvability of 
defects with X-ray computed 
tomography vs serial sectioning

• Identifying the role of machine 
learning in defect identification

• Characterizing how defects 
effect the formation of spall 
cavitation
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And many moreAnd many more



• Testing:
• Test Performed: High-velocity impact 

loading 
• System: Gas Gun
• Impact Velocity: 300 m/s (671 mph)

• Fabrication:
• Material: Ti-5Al-5V-5Mo-3Cr

• Ti-5553
• System: Renishaw AM250 LPBF
• Beam Type: Yb-Fiber power modulate
• Beam Power: 200 W  - 1070 nm
• Pattern: 

• Layer-to-layer rotation: 67⁰
• Focal spot: 70 μm 
• Slice thickness: 60 μm
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Dynamic Integrated Compression Experimental Facility at SNL

AM Sample Production and Experimental Setup



Serial Sectioning Technique:

• Serial Sectioning:
• System: Robomet 

automatic sectioning
• Resolution: 

• 10 μm a slice
• 1.08 μm pixels

• Time: 
• 20 slices an hour
• ~ 50 hours total
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1 cm



• Porosity Analysis:
• Data Type: 16 bit voxel data
• Software: Volume Graphics – 

VGStudioMax 3.5
• Parameters chosen to optimize 

porosity assessment (iterative)
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• Histogram of gray values:
• Material peak (M)
• Background peak (B)
• Standard deviation (σ)

Segmentation and Porosity Analysis:
• Thresholding:

• Interpolation based: B + (M-B)*C1
• Interpolation factor (C1)

• XCT: 0.95  SS: 0.64

• VGDefX:
• Standard deviation based: M + σ*C2
• Deviation factor (C2)

• XCT: -0.5  SS: -2.5

• VGEasyPore:
• Contrast based in local window (10 vx width)
• Absolute contrast: gray value difference

• XCT: 1000   SS: 34.8
• Relative contrast: % of gray value difference

• XCT: 6%  SS: 10%



• Porosity Analysis:
• Data Type: 16 bit voxel data
• Software: ImageJ -> Trainable 

WEKA Segmentation 3D
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• WEKA:
• Machine learning segmentation
• Generates additional feature 

volumes from input volume
• User marks examples of each 

class/label 
• Random forest training for 

deterministic class assignment 
based from data in the volumes

Machine Learning on CT Image Stacks



• WEKA Extended:
• Marks are made over regions of gray-scale slice data and then assigned a label

• User intuition and perception is translated into training data
• Intuitive assignment and iteration improve AI identification

• Features are generated to expand the input data
• Features used: Gaussian blur, difference of Gaussians, derivatives, Laplacian, Hessian, median, and 

variance
• Six kernel sizes used ranging from 1 to 8 voxels in width

• Continuity is maintained by training on all the disk volumes simultaneously
• Volumes are concatenated along their 3rd dimension
• Training is iterated until prediction is optimal for all disks

8 Machine Learning Inputs
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VG-Easy Pore (Local Contrast) VGDefX (Deviation Threshold) WEKA (User input + AI)

Comparison of Porosity Identification:



Segmented Porosity Results:
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Serial Sectioning Segmented Porosity Results:



Spall Plane Results:

• XCT Segmented 
Spall:

• Porosity 
identification 
techniques

• Contrast changes 
affect 
identification
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Local 
Contrast 

Machine 
Learning

Deviation



Isometric View of Spall Planes:

• XCT Segmented 
Spall:

• Comparison of 
Porosity with 
spall plane 
formation
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Post Mortem



Comparing Porosity and Spall Cavitation:
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Cavitation

 Spall 
Cavitation



Pre and Post Impact Comparison

• Comparing Porosity and Spall Cavitation:
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Results:

• SEM Spall:
• Cross section of 

spall plane
• Tensile fracture 
• Interaction with 

porosity
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Porosity Detection (Conventional versus ML):

• Comparison of porosity with different porosity identification techniques:
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XCT – ISO Thresholding

XCT – Deviation 
Threshold

XCT – Global Contrast

XCT – Local Contrast

XCT – Machine Learning

• Porosity 
identification 
is a function of 
signal to noise 
ratio (SNR)

• Additional 
errors may 
occur due to 
changing 
contrast in the 
reconstruction



• Comparison of porosity between serial sectioning and XCT techniques:
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• SS vs XCT
• Differences in 

resolution
• Congruous 

reconstruction (XCT) vs 
layer-wise 
reconstruction

The lines within the 
image are 10 μm 
cut lines

XCT and SS

SS only 

Data Comparison for Scoring Indications:



Statistical Distribution of Detected Pores:
• Comparison of XCT and serial sectioning identification techniques:
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• Variation in 
pore volume 
and surface 
area between 
XCT and SS is 
on par with the 
order of 
magnitude 
difference in 
resolution



• Comparison of XCT and SS identification techniques:
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Comparing all pores greater 
than 0.0004 mm3

Comparing only the top 15 
largest pores 

Statistical Distribution of Largest Pores:



Conclusions:
• Commercial porosity 

identification techniques are 
enhanced by ML

• ML performed better in terms of 
small pore identification and 
robustness to false positive 
identification

• ML is extremely computationally 
expensive compared to 
commercial techniques (days of 
analysis and 100s GBs of RAM)
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• XCT results faired well against 
SS

• Major porosity identified by both
• Discrepancies with small pores 

near the detectability limit of XCT
• XCT is faster 
• Both techniques produce 

artifacts

• SEM confirmed tensile fracture 
and interaction with porosity



Shock Compression Background

• Testing:
• Free surface velocity measured 

during spallation

• Dynamic fracture phenomena:
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Dynamic Spall Strength fracture phenomena is due to 
interacting decompression waves that produce a region of 
tension in the interior of the material.
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X-ray Inspection Setup:

• Two dimensional images are 
reconstructed in a three 
dimensional data set (volume) 
that can be sliced in XY, YZ, and/or 
XZ

• X-ray Computed Tomography:
• Penetrating radiation is 

attenuated by AM material
• Attenuated radiation is sampled 

at the flat panel detector and 
digitized into an image

• Multiple images are taken at 
different angles while the part is 
spun 360 degrees
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Detector

X-ray Source

Rotational Stage

Sample Titanium Ti5553 Disks scanned in sets of 5
Energy 229 kV Projections 3145
Amps 96 µA Effective Pixel 

Size
21.13 and 36.47 µm 

Magnification 5.48 Detector Type VarionL08
Filter N/A X-ray Head Type Nikon Microfocus XCT
Time 90 Mins  Frame Average 6 Frames/projection



• Quantification of Porosity 
Comparison:

• Assignment of ground truth to ML 
segmented SS porosity

• Systematic comparison of similar 
pores across inspection and 
analysis techniques

• Data Processing:
• Serial sectioned slices were 

similarly processed for porosity
• All porosity analysis results 

collected in VGStudioMax
• Porosity Metrics exported to 

MatLab
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Load all porosity analyses

Sort porosity in each table in descending order by volume

Store as separate table for each analysis w/ rows as 
individual pores and columns as the pore properties/features

Remove all pores smaller than 0.0004 mm3 
(the volume of 8 voxels of XCT data)

Loop through the pores of the ground truth 
table

For each ground truth pore take 
the Euclidian distance from its 
center to all other pore centers

Loop through the 
other analysis tables 

Check for corresponding pore in 
current table within one equivalent 
diameter of the ground truth pore

If found: 
Record 

properties/features of 
corresponding pore

If not found:
Record the 

properties/features as NaN

Move on to 
next 

analysis 
table

Move on to 
next 

ground 
truth pore

Flow Chart of Process



• Comparison of porosity between serial sectioning and XCT.
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Serial Sectioning

XCT

• Pores identified via 
machine learning

• SS images are not 
free of artifacts

Porosity Detection (Serial Sectioning versus ML):



Comparing all pores greater than 
0.0004 mm3

Comparing only the top 15 biggest 
pores 

Notice the huge number of false positives 
here. The code is now saying anything not 
in those top 15 is a false positive



Comparing all pores greater than 
0.0004 mm3

Comparing only the top 15 biggest 
pores 



Comparing all pores greater than 
0.0004 mm3

Comparing only the top 15 biggest 
pores 



Comparing all pores greater than 
0.0004 mm3

Comparing only the top 15 biggest 
pores 


