

Sandia
National
Laboratories

Numerical Investigation on the Performance of a Variance Deconvolution Estimator

Kayla Clements, Gianluca Geraci, Aaron Olson

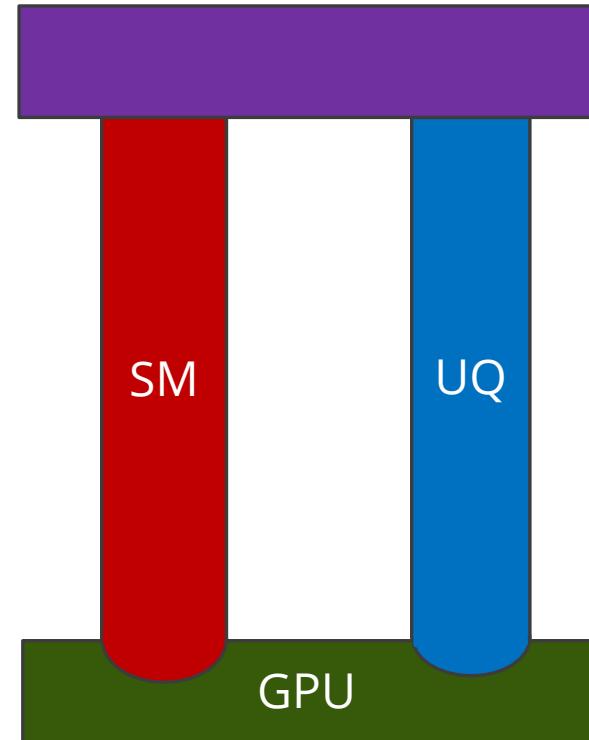
2022 ANS Annual Meeting

Motivation – Next-Generation Monte Carlo Project

Develop efficient, embedded **stochastic media (SM)** and **uncertainty quantification (UQ)** Monte Carlo transport methods for the GPU.

SM in Embeddable UQ methods:

- Notation, expressions, adaptations
- Multi-fidelity acceleration



Embeddable UQ Goals:

- Variance deconvolution
- NISP approach to PCE
- Sampling-based GSA method

Background – Uncertainty Quantification

- Quantity of interest (QoI): $Q(\xi)$
- p^{th} moment equation
 - $\mathbb{E}[Q^p] = \frac{1}{N} \sum_{i=1}^N Q_i^p$
 - $\text{Var}[Q] = \mathbb{E}[Q^2] - \mathbb{E}[Q]^2$
- Sampling UQ algorithm:
 1. Sample UQ parameter ξ
 2. Solve for QoI $Q(\xi)$ with existing solver
 3. Repeat for a number of UQ samples
 4. Evaluate statistics, e.g. $\mathbb{E}[Q]$ and $\text{Var}[Q]$, over UQ space

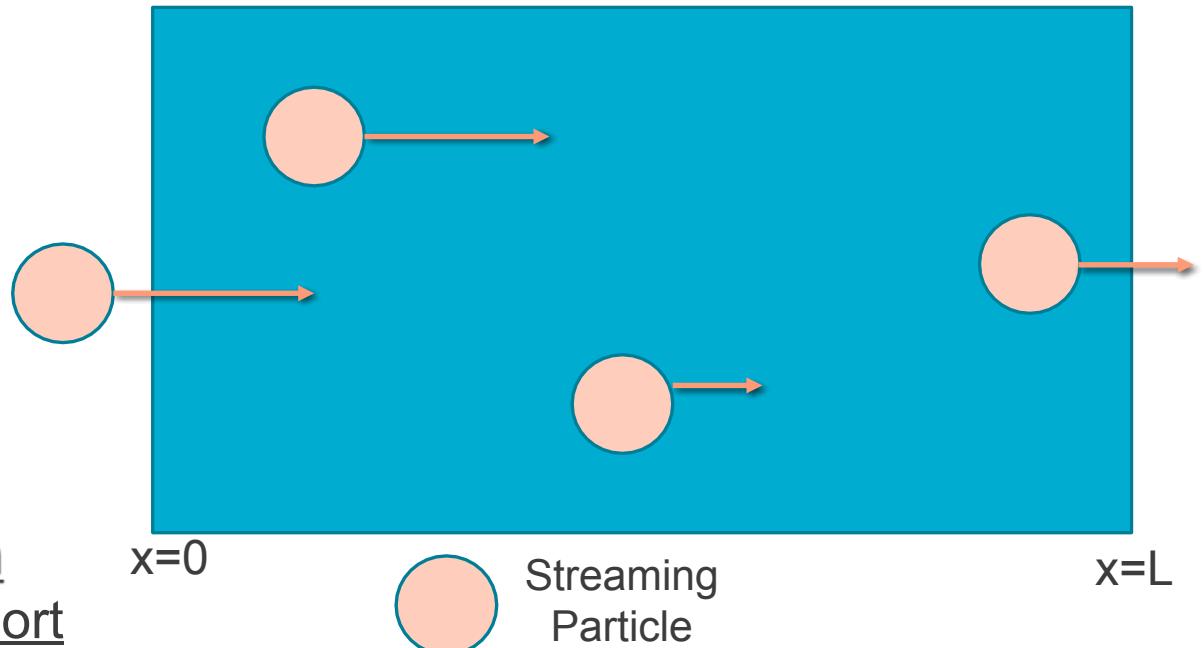
Background – Monte Carlo Particle Transport

$$\mu \frac{\partial \psi(x, \mu)}{\partial x} + \Sigma_t(x) \psi(x, \mu) = 0$$

$$0 \leq \mu \leq 1, -1 \leq \hat{\mu} \leq 1$$

$$\psi(0, \mu) = 1, \mu \geq 0, \quad \psi(L, \mu) = 0, \mu > 0$$

$$\Sigma_t(\xi) = \Sigma_t + \Delta \Sigma_t * \xi, \quad \xi \sim U(-1, 1)$$



UQ Sampling Algorithm

1. Sample UQ Monte Carlo Transport
2. Initialize particle(ξ):
3. Sample distance to next collision
4. Stream particle – boundary? collision?
5. Continue until particle is either absorbed or exits system
6. Start again with a new particle until all particles have finished
7. Repeat for all histories, then average quantities of interest
8. Perform UQ analysis

Theory – Estimator Statistics

- Uncertain parameter Σ_t

$$\Sigma_t(\xi) = \Sigma_t + \Delta\Sigma_t * \xi, \xi \sim U(-1,1)$$

- Parameter uncertainty ξ and Monte Carlo solver uncertainty η

$$f = f(\xi, \eta)$$

$$T(\xi_i) = \mathbb{E}_\eta[f(\xi_i, \eta)] = \frac{1}{N} \sum_{j=1}^N f(\xi_i, \eta_j) \approx \frac{1}{N_\eta} \sum_{j=1}^{N_\eta} f(\xi_i, \eta_j) = \tilde{T}(\xi_i)$$

- Average code response

$$\mathbb{E}_\xi[T] = \frac{1}{N} \sum_{i=1}^N T_i \approx \frac{1}{N_\xi} \sum_{i=1}^{N_\xi} \tilde{T}(\xi_i)$$

Theory – Variance Deconvolution I

- Goal: $\text{Var}[T(\xi)]$

$$= \text{Var}_\xi[T(\xi, \eta)] \approx \text{Var}_\xi[\tilde{T}(\xi, \eta)]$$

- Law of total variance

$$\text{Var}_Y[Z(X, Y)] = \text{Var}_Y[\mathbb{E}_X[Z]] + \mathbb{E}_Y[\text{Var}_X[Z]]$$

- Applied to solver response

$$\text{Var}[\tilde{T}(\xi, \eta)] = \text{Var}_\xi \left[\mathbb{E}_\eta[\tilde{T}(\xi, \eta)] \right] + \mathbb{E}_\xi \left[\text{Var}_\eta[\tilde{T}(\xi, \eta)] \right]$$

$$\mathbb{V}ar[\tilde{T}(\xi, \eta)] = \mathbb{V}ar_{\xi} \left[\mathbb{E}_{\eta}[\tilde{T}(\xi, \eta)] \right] + \mathbb{E}_{\xi} \left[\mathbb{V}ar_{\eta}[\tilde{T}(\xi, \eta)] \right]$$

$$\mathbb{V}ar[\tilde{T}(\xi, \eta)] = \mathbb{V}ar_{\xi}[T] + \frac{1}{N_{\eta}} \mathbb{E}_{\xi}[\sigma_{\eta}^2]$$

$$\mathbb{V}ar_{\xi}[T] = \mathbb{V}ar[\tilde{T}(\xi, \eta)] - \frac{1}{N_{\eta}} \mathbb{E}_{\xi}[\sigma_{\eta}^2]$$

Parametric
variance

Total (polluted)
variance

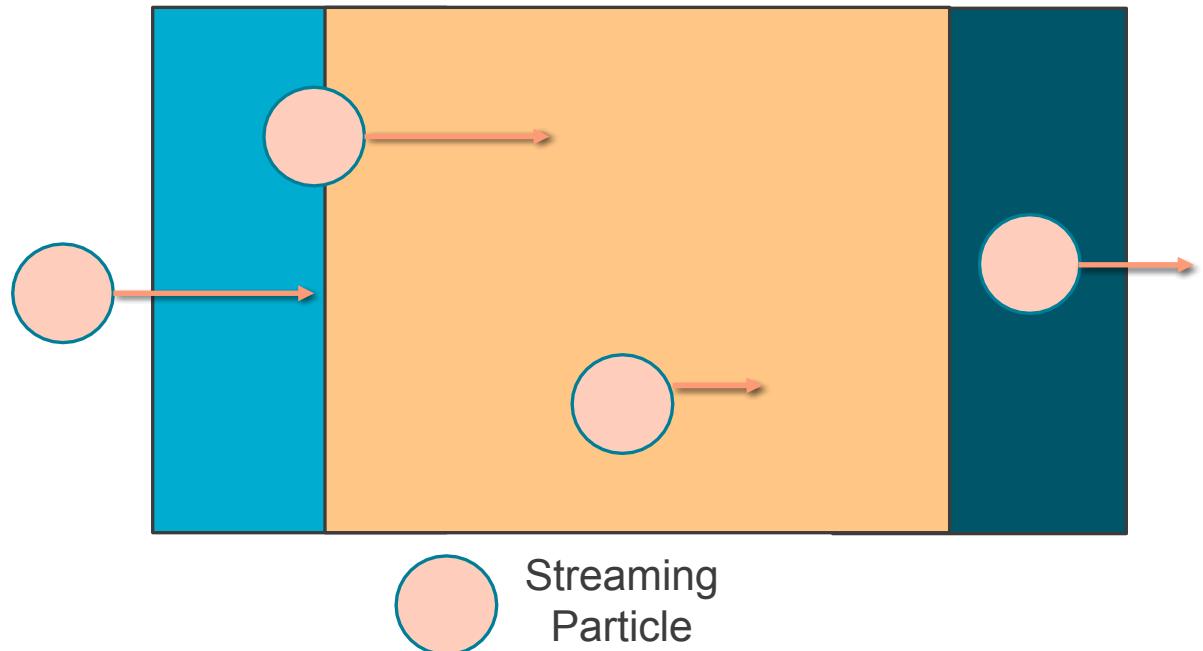
Average
Monte Carlo
solver variance

Example – Problem Description

$$\mu \frac{\partial \psi(x, \mu, \xi)}{\partial x} + \Sigma_t(x, \xi) \psi(x, \mu, \xi) = 0$$

$$0 \leq \xi \leq 1, -1 \leq \mu \leq 1$$

$$\psi(0, \mu) = 1, \mu \geq 0, \quad \psi(L, \mu) = 0, \mu > 0$$



$$\Sigma_t(\xi) = \bar{\Sigma}_t + \Delta \Sigma_t * \xi,$$

$$\xi \sim U(-1,1)$$

$$c = \Sigma_s / \Sigma_t(\xi) = \bar{c} + \Delta c * \xi,$$

$$\xi \sim U(-1,1)$$

	Problem Parameters			Scattering Parameters	
	x_R	$\Sigma_{t,m}^0$	$\Sigma_{t,m}^\Delta$	$c_{s,m}^0$	$c_{s,m}^\Delta$
$m = 1$	2.0	0.90	0.70	0.50	0.40
$m = 2$	5.0	0.15	0.12	0.50	0.40
$m = 3$	6.0	0.60	0.50	0.50	0.40

Table I: 1D attenuation problem parameters.

Example – Solver Algorithm

1. Determine number of realizations N_ξ and number of histories N_η
2. For $i = 1:N_\xi$
 - a) Sample ξ and calculate $\Sigma_t(\xi_i)$
 - b) For $j = 1: N_\eta$
 - Run simulation to compute $f(\xi_i, \eta_j)$
 - c) Calculate $\tilde{T}(\xi_i) = \frac{1}{N_\eta} \sum_{j=1}^{N_\eta} f(\xi_i, \eta_j)$
 - d) Calculate $\sigma_\eta^2(\xi^{(i)}) \approx \frac{1}{N_\eta - 1} \sum_{j=1}^{N_\eta} \left(f(\xi^{(i)}, \eta^{(j)}) - \frac{1}{N_\eta} \sum_{s=1}^{N_\eta} \tilde{f}(\xi^{(i)}, \eta^{(s)}) \right)^2$
3. Calculate average of stochastic noise over the whole parameter space: $\mathbb{E} [\sigma_\eta^2] \approx \frac{1}{N_\xi} \sum_{i=1}^{N_\xi} \sigma_\eta^2(\xi^{(i)})$
4. Calculate sample variance of solutions from Monte Carlo simulations over parameter space:

$$\mathbb{V}ar_\xi[\tilde{T}(\xi, \eta)] \approx \frac{1}{N_\xi - 1} \sum_{j=1}^{N_\xi} (\tilde{T}(\xi_i) - \tilde{T}_{avg})^2$$

5. Solve for the true variance over the parameter space by removing the average stochastic MC noise from the measured solution variance:

$$\mathbb{V}ar_\xi[T] = \mathbb{V}ar[\tilde{T}(\xi, \eta)] - \frac{1}{N_\eta} \mathbb{E}_\xi[\sigma_\eta^2]$$

Results – Attenuation Only

Sampling estimator: $S_T^2 \approx \text{Var}_\xi[T]$			
	Benchmark	Deconvolved	Analytic
$\mathbb{E}[T]$	8.915E-2	8.870E-2	8.378E-2
S_T^2	5.789E-3	5.768E-3	5.505E-3

Table II. Mean Qol and parametric variance.

- Benchmark: $N_\eta = 10^5, N_\xi = 10^3 (C = 10^8)$
- Variance deconvolution: $N_\eta = 10^1, N_\xi = 10^3 (C = 10^4)$

Variance -- 25000 Est. Realiz, $(N_\xi, N_\eta) = (300, 5)$

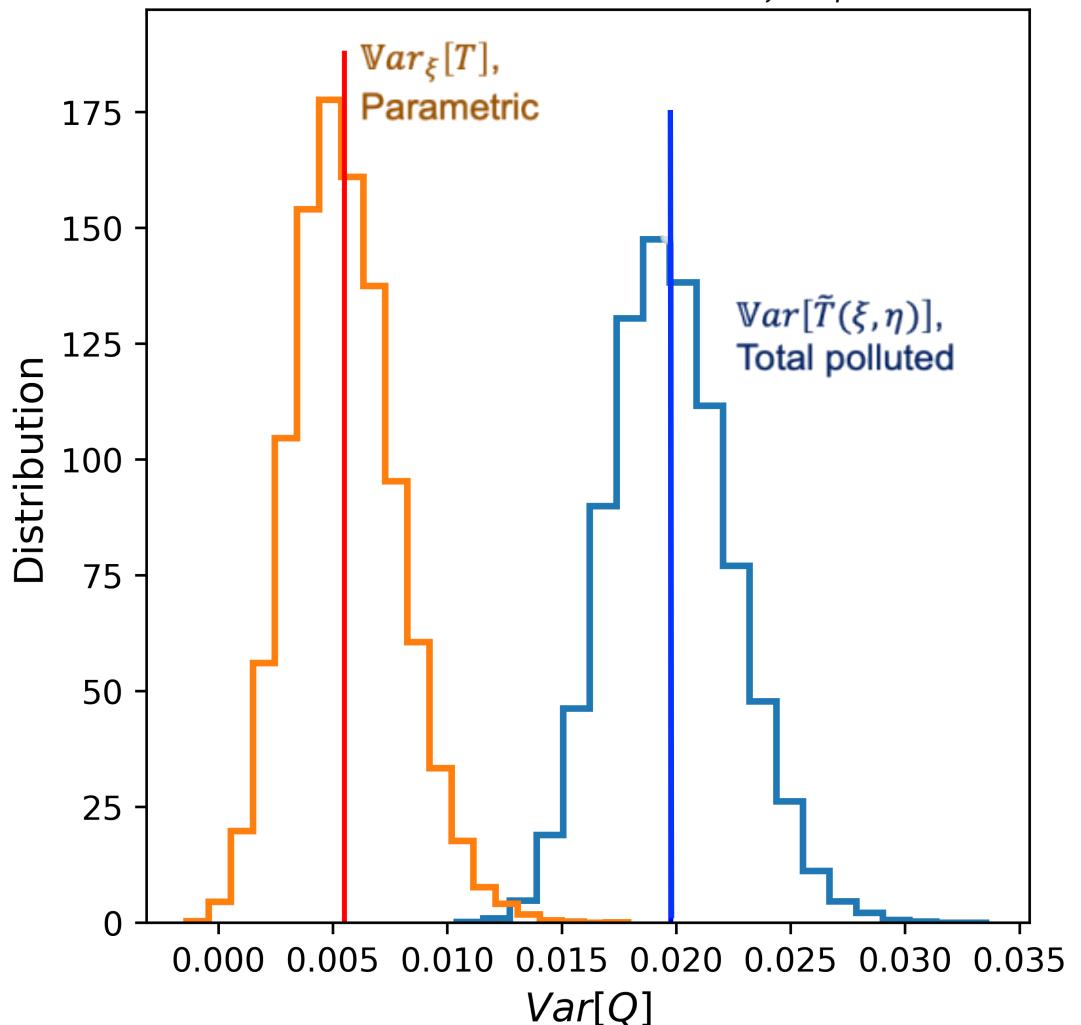


Figure I: 1D radiation transport problem (m=3). 25,000 variance deconvolution repetitions.

Results – Transmittance vs. Reflectance

$$N_\xi \times N_\eta = 2000$$

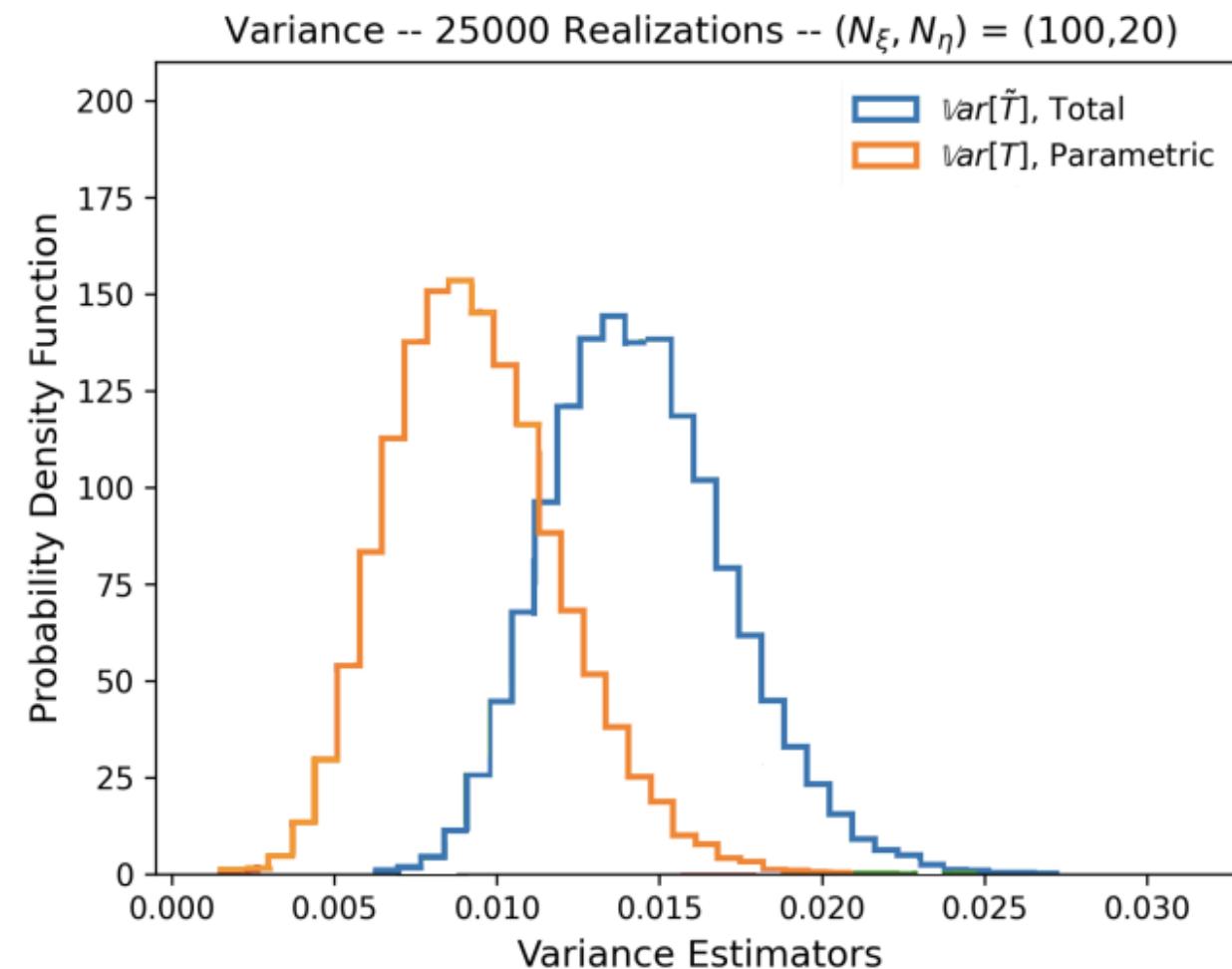
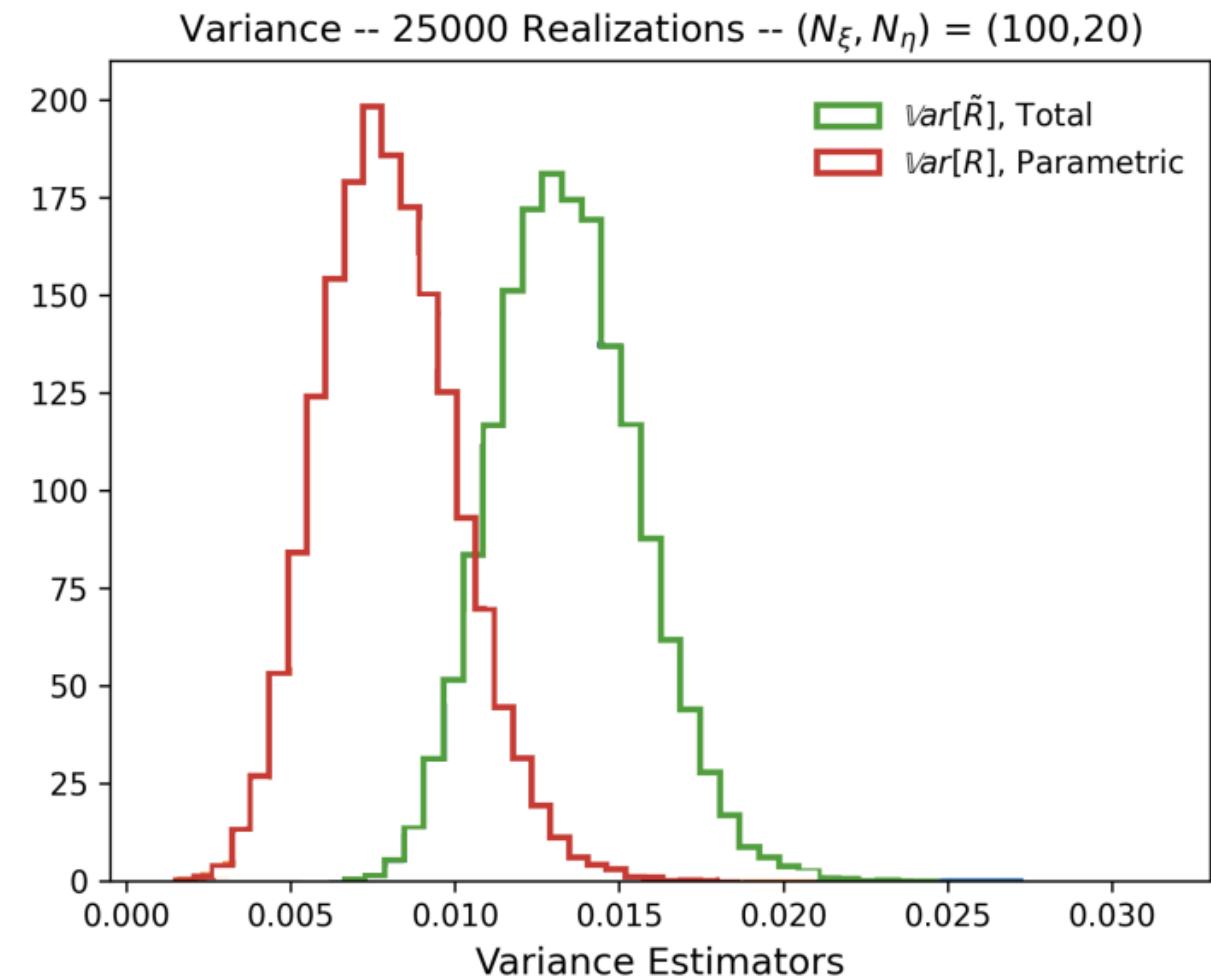


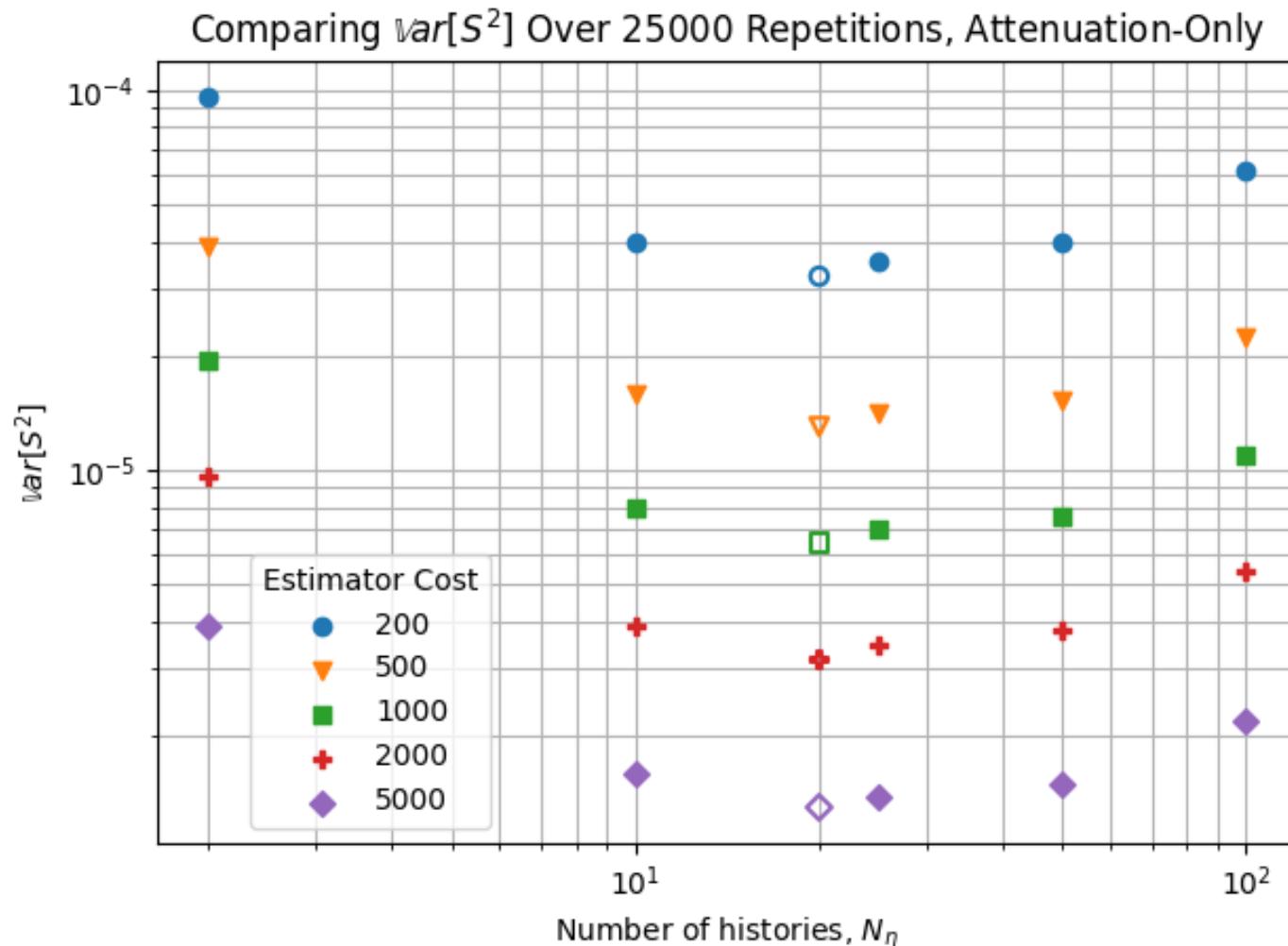
Figure II: Variance deconvolution results for transmittance (left) and reflectance (right) in a problem with scattering.

Numerical Study

- Sampling estimator $S^2 \approx \text{Var}_\xi[T]$ is unbiased
- Total estimator cost $C = N_\xi \times N_\eta$
- Goal: accurate estimate of S^2

For given cost, find N_ξ and N_η that minimize $\text{Var}[S^2]$

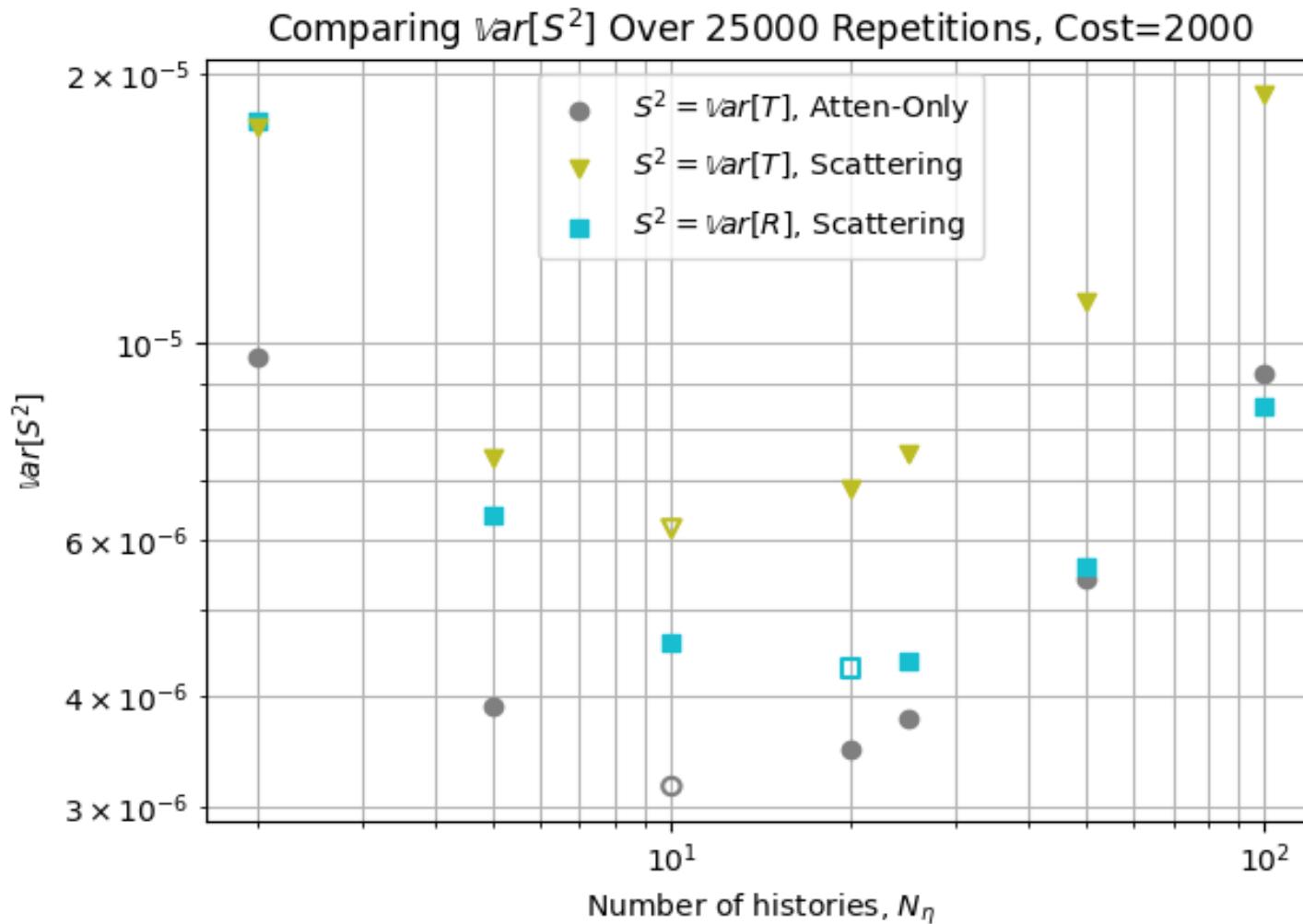
Numerical Study Results – Attenuation Only



Total estimator cost
 $C = N_\xi \times N_\eta$

Figure III. $\text{Var}[S^2]$ as a function of N_η for a variety of total estimator costs, log-log plot. Unfilled point is minimum $\text{Var}[S^2]$.

Numerical Study Results – Transmittance vs. Reflectance



Total estimator cost
 $C = N_\xi \times N_\eta = 2000$

Figure IV. $\text{Var}[S^2]$ as a function of N_η for the attenuation-only and scattering cases. Log-log plot, estimator cost $N_\xi \times N_\eta = 2000$. Unfilled point is minimum $\text{Var}[S^2]$.

Conclusions and Future Goals

- “De-polluted” total variance by removing contribution from Monte Carlo transport solver
- Performed a numerical campaign to understand the estimator variance trade off between particle histories N_η and UQ samples N_ξ
- Found that $\text{Var}[S^2]$ is minimized at different locations for different Qols, even within one problem

Future/Related work:

- Use variance deconvolution to efficiently compute Sobol Indices for Monte Carlo solvers
- Working towards closed-form solution to allow estimation of a cost distribution that minimizes $\text{Var}[S^2]$ that takes re-sampling cost into account
- Related work – G. Geraci and A.J. Olson, “Deconvolution strategies for efficient parametric variance estimation in stochastic media transport problems,” Transport Methods Technical Session

Questions?