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| Motivation - Next-Generation Monte Carlo Project m

Develop efficient, embedded stochastic media (SM) and uncertainty quantification (UQ) Monte Carlo transport methods
for the GPU.

SM in Embeddable UQ methods:
* Notation, expressions, adaptations
* Multi-fidelity acceleration

Embeddable UQ Goals:
* Variance deconvolutlon
* NISP approach to PCE
« Sampling-based GSA method
I




s 1 Background - Uncertainty Quantification

« Quantity of interest (Qol): Q(§)

«  p'" moment equation
= E[QP]= 3N, QF
* Var[Q] = E[Q?] — E[Q]?

«  Sampling UQ algorithm:
1. Sample UQ parameter &
2. Solve for Qol Q(¢) with existing solver
3. Repeat for a number of UQ samples
4. Evaluate statistics, e.g. E [Q] and Var[Q], over UQ space
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+ 1| Background - Monte Carlo Particle Transport

YP(x, 1)
u

dx
0< <

+Ze ()P (x,u) =0
-1< <1

) ‘

YyO,u) =1,u=0, Y(L,pu) =0,u>0

UQ Sampling Algorithm x=0 Streaming
Sample UQ pdoatectarto Transport Q Particle
BiitiediZep@diafE$ ):

Sample distance to next collision

Stream particle — boundary? collision?

Continue until particle is either absorbed or exits system
Start again with a new particle until all particles have
finished

Repeat for aliimistorefd,) Qemampdeage quantities of interest
Perform UQ analysis

RO =

o
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s | Theory — Estimator Statistics

» Uncertain parameter X,
Zp(§) = e + A% % §, E~U(-1,1)

- Parameter uncertainty ¢ and Monte Carlo solver uncertainty n
f=r&n
1% 1
T(E) = Eylf Guml =1 fEn) == ) fEun) =TE
j=1 Ti=1

 Average code response

1 1 +Ne =
E¢[T]| = ﬁzi’il T; = N—fZifl T($:)
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Theory - Variance Deconvolution |

* Goal: Var|T(§)]

= Wﬂ?‘f [T(fl 7?)] ~ Warf [T(f; T?)]

» Law of total variance

Vary|Z(X,Y)] = Vary|Ex[Z]] + Ey[Vary[Z]]

» Applied to solver response

Var(T(€m)] = Varg |E, [T m)]| + E¢ [Var, [T, n)]]
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7 I Theory - Variance Deconvolution I

Var(T(§,m)] = Varg |E, [T, m]| + E¢ |Var, [T, m)]|

= 1
Var[T(&,n)] = Va?’g[T_ + N—IEf [J?% ]
n
= 1 ,
Vare[T] = Var[T(§,n)] — N_Ef[% |
n
' Average
P t Total (polluted
5;2?&2(3 7 3a§!;?1;ee ) Monte Carlo

solver variance
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¢ | Example - Problem Description

p D s e O ) = 0

0< <
YO,u) =1,u =0,

—-1< <1
Y(L,pu)=0,u>0

)

Z¢(§) = I + AZ, * &,
c= Zs/Z(§) =C + Ac *¢,

§~U(-1,1)
6--.- U(—l,l)
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Problem Parameters

Scattering Parameters

X | 2, | 25, | b S
m=1 | 2.0 | 0.90 | 0.70 || 0.50 0.40
m=21| 50 0.15 | 0.12 [ 0.50 0.40
m=3|{ 6.0 0.60 | 0.50 || 0.50 0.40

Streaming
Particle l

Table I: 1D attenuation problem parameters.



o | Example - Solver Algorithm
1. Determine number of realizations Ng and number of histories N,

2. Fori =1:N;g
a) Sample ¢ and calculate Z,(¢;)
b) Forj=1:N,

*  Run simulation to compute f(¢;,7;)

c) Calculate T(§;) = NL,?E S(&mj)

2
d) Calculate ag(ef“)le_IZ( (sﬁ,nf”)——Z‘,f(e ,ns’))

1

. 1 -
3. Calculate average of stochastic noise over the whole parameter space: E [02] ~ — ) o2 (¢C

4. Calculate sample variance of solutions from Monte Carlo simulations over parameter space:

Varg[T(¢,n)] = (T(‘ﬁ) vg)

5. Solve for the true variance over the parameter space by removing the average stochastic MC
noise from the measured solution variance:

€
_ 1
&h) Varg[T] = Var[T(¢,n)] —N—IEg[crr?]
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0o | Results - Attenuation Only

Sampling estimator: S7 = Var[T]

Benchmark | Deconvolved | Analytic
E[T] | 8.915E-2 8.870E-2 8.378E-2
S2 | 5.789E-3 5.768E-3 | 5.505E-3

Table Il. Mean Qol and parametric variance.
« Benchmark: N,, = 10°,N; = 10° (C = 10°)

« Variance deconvolution: N,, = 10, Ny = 103 (C = 10%)
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Variance -- 25000 Est. Realiz, (N¢, Njy) = (300,5)

Varg[T]|,
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Figure I: 1D radiation transport problem (m=3). 25,000

variance deconvolution repetitions.



1 | Results - Transmittance vs. Reflectance Ng XN, = 2000

Variance -- 25000 Realizations -- (Ng, N,) = (100,20) Variance -- 25000 Realizations -- (Ng, Nj) = (100,20)
200 A 1 var(f1, Total 200 1 1 ar(R), Total
[ war[T], Parametric [ var[R], Parametric
175 1 175 -
j
ke
-
Q 150 - 150 -
=0
L
2z 125 A 125 -
[7)]
o
3 100 - - 100 - !
o
= 75- 75 -
0
|
0
O 50 50 -
o
25 25 -
'D = T T T T T T O = T T T T o T T
0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.000 0.005 0.010 0.015 0.020 0.025 0.030 I
Variance Estimators Variance Estimators

‘:}} Figure Il: Variance deconvolution results for transmittance (left) and reflectance (right) in a problem with
&R scattering.
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2 1 Numerical Study
» Sampling estimator $* ~ Varg[T] is unbiased
* Total estimator cost C = Ng X N,

« Goal: accurate estimate of S

For given cost, find N and N,, that minimize Var(S?]
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iz 1 Numerical Study Results - Attenuation Only m

Comparing var{S2] Over 25000 Repetitions, Attenuation-Only

107 1 »
=
A 2 & o ® L
- 7 .
. Y v v Total estimator cost
LFy
§ 10°1 . C = N‘f XN-,?
) : " A 0
] Estimator Cost +
1T % e 200 +* ¥
v 500 + ¥
m 1000 .
+ 2000 .
¢ 5000 o ¢ ¢
o S |

Number of histories, N,

<) Figure lll. Var[S?] as a function of N,, for a variety of total estimator costs, log-log plot. Unfilled
&h) point is minimum Var[S2].
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2 1 Numerical Study Results - Transmittance vs. Reflectance m
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Comparing var[S?] Over 25000 Repetitions, Cost=2000

2% 1077
15 e 5%=uvar[T], Atten-Only
52 = yar[T], Scattering
m 52 =1ar[R], Scattering
1072 1 & .
_ | . Total estimator cost
2 C = Ng xN, = 2000
6x 1070 - "
-
" o
4% 107° 1 »
.
3x 107 1 c i i —————
10* 102 I

Number of histories, N

Figure IV. Var[S?] as a function of N,, for the attenuation-only and scattering cases. Log-log plot,
estimator cost Ny x N,, = 2000. Unfilled point is minimum Var([S?].



s | Conclusions and Future Goals @i

]
« “De-polluted” total variance by removing contribution from Monte Carlo transport solver

« Performed a numerical campaign to understand the estimator variance trade off between particle
histories N,y and UQ samples N¢

« Found that Var[S?] is minimized at different locations for different Qols, even within one problem

Future/Related work:
» Use variance deconvolution to efficiently compute Sobol Indices for Monte Carlo solvers

» Working towards closed-form solution to allow estimation of a cost distribution that minimizes
Var[S?] that takes re-sampling cost into account

= Related work — G. Geraci and A.J. Olson, “Deconvolution strategies for efficient parametric
variance estimation in stochastic media transport problems,” Transport Methods Technical
Session
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