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Chemical Kinetics at SNL s
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Themes in BES kinetics research at Sandia

" Direct kinetics measurements of elusive intermediates
= Multiscale interactions in complex reacting systems O e
=" Non-equilibrium reactions
" Non-adiabatic reactions

Ozonolysis and
Criegee
Intermediate
Kinetics

Low-
Temperature
Oxidation

= | ow-temperature oxidation
chemistry

=" Molecular weight growth
towards particle formation

Theory,
Automation,

Molecular
and

Weight Growth

Experimental
Design

GAS PHASE CHEMICAL PHYSICS



Energy {kcalimol)

compute rates & speed up discovery

Chemical Kinetics at SNL:

Theoretical and Computational Method Development

Molecular scale Stochastic kinetics Non-thermal
Chemical Complexity Mesoscale Phenomena
Numerical methods for
Workflow tools that automatically Effects of Nonthermal H,/0,

stochastic modeling of stiff
kinetics at the mesoscale, gas
phase and surface kinetics

Chemistry on Detonation
Formation

search for reaction pathways,
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Further Developments of KinBot and Applications

Cyclopentene + O3P

v lon fragmentation pathway exploration was demonstrated for
ISC beyond the entrance channel

MPIMS data interpretation

v' Stereochemistry-aware PES search c NEW MECHANISH
v’ Search on triplet and singlet PES are both s_uccessful N \O . §C/H\/\ L e
v' Workflow is enabled to run on NERSC via Fireworks and Q-Chem Propylketene 3oarbene
integration (within ML project
g ( project) /. - ISC
Acroleln
Low-temperature cyclopentane oxidation H<TNBOT Cyclopentene oxide Ethene __Propylketens
Mechanism and kinetics w/ L. Sheps and HPCC
Ramasesha et al., J. Phys. Chem. A., 2021, 125, 9785-9801
HO, — Oxidation chemistry of DMO
oo- }' OO OOH Strongly stereoisomer-dependent kinetics w/ B. Rotavera (UGA)
Lo#0, A +0¢ {
o > ____/) — [ ‘) — products
00'
\ 0OH OH
- A )
__J_,{ \J

Sheps et al., J. Phys. Chem. A, 2021, 125, 4467-4479

$ Lg ..
® GES A . | &
Doner et al., Faraday Discuss., 2022, in press
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male fraction (CH,O)

Low-Temperature Oxidation of
Methyl Hexanoate
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A. Rousso et al., J. Phys. Chem. A, 2020, 124, 9897-9914
Invited Feature Article, ACS Editors’ Choice, Open Access



Ozone Interactions with Hydrocarbons:
lgnition and Atmospheric Chemistry

. I
HO. & }J——% Cs-RO- S C,o-Products

self-reaction

» Reactions of ozone with C=C double bonds » Ozonolysis reactions

are important in the
atmosphere:

s Cls-Products .

cross-reactions =y *°

SOA
Ozonolysis mechanism laid

. HOIO, + %" .-F". . fast s 8/ | e @
out by Rudolf Criegee : iy 7 e ana — Caor20PrOAUCES
crass-reactions . . -

R. Criegee, Angew. Chem. Int. Ed. Engl. (1975) | | o

» Ozone-fuel interactions might e
. . . 5 Flasma dlschar_g_g__»\
be important in plasma-a55|stey B _

. I/"fﬁilit wind'.
combustion:

Tons/clectrons ~.Instability

7 Fuel
~fragments /

< Temperature™, NO. 0, ( Radicals ™
: ! 0, H, OHInt. species

* Fuel-ozone interactions?  ~--.fncrease - Excited H,, CO
* Thermal dissociation? r Ny species CH,
0, la‘-’\g] l CH,0
° e — e T T
Enha ncement effects on ¢ Thermal - < Kinetic > < Transport
LTC chemistry? T T T

| Combustion Enhancement

@ (_ R' E,L Y. Ju, Proc. Combust. Inst., 2021, 38, 83-119 u
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Low-Temperature Oxidation of
Methyl Hexanoate — Ozone Addition

] C-H140; (MHX)
» significantly more fuel consumption in the

c 0.010 1 ~{—non-ozone . .
S ool intermediate temperature range

E » very little NTC behavior when ozone added
L : :

o » almost no change in LTC fuel profile

o

» small increase in fuel consumption

450 550 650 750 850 950
Temperature (K)

@ CR. E,L A. Rousso et al., J. Phys. Chem. A, 2020, 124, 9897-9914 u

Invited Feature Article, ACS Editors’ Choice, Open Access
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Extreme Low-Temperature Combustion (ELTC):
Ozone-Initiated Oxidation of Methyl Hexanoate
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@ GRE,& A. Rousso et al., J. Phys. Chem. A, 2020, 124, 9897-9914 u
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Extreme Low-Temperature Combustion (ELTC):
Ozone-Initiated Oxidation of Methyl Hexanoate

Signal Intensity / a.u.

exp. O, depletion

(excl. MHX)

0O, depletion :
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LTC Region
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2H402

Temperature / K
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300 350 400 450 500 550 600 650 700 750

A. Rousso et al., J. Phys. Chem. A, 2020, 124, 9897-9914

800

v
v

modeled ozone decomposition without MHX

peak atomic O production overlaps with experimental
peaks in ELTC regime

lines up with accelerated O, depletion due to fuel
addition

O radical chemistry is driving force for hydroperoxide
chemistry — no ozonolysis likely at play

in LTC regime, traditional LTC pathways accelerate —
similar order/faster than ozone decomposition

v" 0 atom makes slight changes but does not
drastically alter pathways

Invited Feature Article, ACS Editors’ Choice, Open Access



Low-Temperature Oxidation of DME
Quantlflcatlon of the Maln Species

{a) DME ) by Gz
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@ CRE,L K. Moshammer etal, J. Phys. Chem. A, 2016, 120, 7890-7901 a

e H. Liao et al., Combust. Flame, 2020, 214, 277-286




Extreme Low-Temperature Combustion (ELTC):
Ozone-Initiated Oxidation of Methyl Hexanoate

Why do we see increased reactivity at around 450K when this was not observed for species such as DME?

Theoretical calculations indicate:

> Atomic O initiated H-abstraction seems to be
more sensitive to fuel structure than
conventional O, abstraction

» Rate constant for O + MHX more than an
order of magnitude faster than O + DME

—
o
N
X}

k, cm® molecule s

10-15 [N AR RN BT EE S SR A A SR A A
300 350 400 450 500 550 600

Temperature, K A. W. Jasper, Argonne

A. Rousso et al., J. Phys. Chem. A, 2020, 124, 9897-9914 12
@ @E,t Invited Feature Article, ACS Editors’ Choice, Open Access -
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Extreme Low-Temperature Combustion (ELTC):
Ozone-Initiated Oxidation of Methyl Hexanoate

O, = 0, + O(3P)
RH+O = R+ OH

R+0, = RO, = QOOH = v’ ozone decomposition is slow, but faster than peroxide

chemistry (extremely slow)
O+ 0 (+M) = 0, (+M)

v’ boosted reactivity compared to non-ozone case, but not

OH+0, = HO,+0 enough to continue fuel breakdown
HO,+0, = OH+20, v' may be sensitive to fuel structure
net: OH+20; = OH+30, v' likely see the formation of several different isomers to
traditional LTC regime
2RO, = 2RO+0,
2RO, = RO+ ROH+O

@ W’t A. Bousso etal., J. Phys. Chem. A, 2020, 124, 9897-9914
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Ozone Interactions with C=C Double Bonds

CH,0H

Criegee Intermediate Reactions
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@ C..{E,t A. C. Rousso, A. W. Jasper, Y. Ju, N. Hansen, J. Phys. Chem. A, 2018, 122(43), 8674-8685 w
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Highly Oxygenated Molecules (HOM):
From Gas-Phase Oxidation to Atmospheric Aerosol

Highly oxidized intermediates
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Ozone-initiated molecular weight growth

“Oligomerization” reactions of carbonyl oxides and formation of highly
oxygenated compounds, as seen in JSR, may form atmospheric aerosol

Proposed mechanism is insertion H,C=CH,
+C)3
We can study elementary Criegee reactions CH,00
1+ROOH |

ROO-CH,00-H ——>
l +-1)CH,00 |
|

ROO{CH,00}H ———>

SOA

\
\
b
kS

Y. Sakamoto, S. Inomata & J. Hiroka a,
J. Phys. Chem. A, (2013), 117, 12912\}?%1

Absorbance
o

40 45 50 75 100 125 140
miz

Barber, Klippenstein, Lester et al., J. Am. Chem. Soc. 2018, 140, 34, 10866—10880
Vansco, Klippenstein, Lester et al., J. Am. Chem. Soc. 2019, 141, 38, 15058—

15069
Caravan, Sheps, Lester, Klippenstein, CAT et al., PNAS 117, 9733-9740 (2020) a

Welz et al., Science 335, 204 — 207 (2012);
CAT et al. Science 340, 177-180 (2013)

T Ll T ¥
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Wavelength / nm




Sequence built from initial reaction with acid

I”

Fast (“supercollisional”) reaction general for CH,00 with all organic acids

(Welz et al., Angew. Chem. Int. Ed. 53, 4547-4550 (2014); Chhantyal-Pun et al., ACS Earth Space Chem. 2,
833-842 (2018); CAT et al, Environ. Sci. Technol. 53, 1245-1251 (2019))

Isoprene-derived conjugated Criegee intermediates also react rapidly

(Caravan et al., Proc. Nat. Acad. Sci. USA 117, 9733-9740 (2020); Vansco et al., Phys. Chem. Chem. Phys.,
2020, 22, 26796-26805; Vansco et al., Molecules 26, 3058 (2021))

Reaction with acid forms a hydroperoxide product

i

bl / i Caravan,
14000} / i 1 Sheps, Lester,
12000 /‘/ I ‘ Klippenstein,
10000 e A g Bsiless o« CATetal,

i T PNAS 117,

‘@ 8000 IE/ eV iz 9733-9740

) (2020)

[Formic acid] / cm >



Sequence started by CH,00 reaction with

formic acid — identified in JSR Can measure representative

insertion reactions of

~~ [(CHg)COOH] = 2.5 10" molecule cm®
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5
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Rousso, Jasper, Ju, Hansen, Phys. Chem. Chem. Phys., 2019, 21, 7341-7357 200 . % -z ey
100l - '$ i -
Product photoionization spectra from
ozonolysis can be compared to photolytic £
direct” kinetics — known to be 00 02 04 08 08 10 12 14 16 18,4,4"

hyd roperoxymethyl formate [{CH,),COCH] / molecule ::m_3

Cabezas and Endo, Phys. Chem. Chem. Phys., 2019, 21, 18059-18064

Crr—% .
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Compare measured
representative reactions to theory
(Kl i ppenst@'izﬁf) +H,0, -> Products

T =298 K (Bath = He)
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Tx107° L p ," |
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"® ; f
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s CH2 202
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o Expt )
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Theory can provide reliable values
for unmeasured rate coefficients

G oA
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Confirms and quantifies
previous proposals
inferred from laboratory
ozonolysis
measurements

Some unexpected
results — stabilized
hydroperoxy-SOZ

product

Continue to work on
theory-experiment

comparisons




1,2-insertion reactions of Criegee intermediates

—O— CICH,00D" —e—- CH,00D"
—4— CICH,00H" —— CH,00H" £

Theoretical
AIE 19.3 eV

Relative photoion signal

10.0 10.2 10.4 10.6

Photon energy (eV)

Chloro(hydroperoxy)methane
formation from reaction of CH,00
with HCl and DCI

CAT et al., Mol. Phys. 119,
1975199, (2021)
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Chhantyal-Pun et al, Phys. Chem.
Chem. Phys. 21, 14042-14052 (2019)
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Photoion Signal / a.u.
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m GE=A
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8.0 85 9.0 9.5

Photoionization Energy / eV

Conformer dependence of
insertion reaction of CH;CHOO
Criegee intermediate with
dimethylamine

Vansco et al., J. Phys. Chem. A
126, 710-719 (2022).



These sequences also appear to be linked
to aerosol in the Amazon rainforest

CIMS measurements of aerosol and gas phase in Brazil
Sequences of CH,00 addition

.
T 403.0 4450

[Fal

Diurnal profiles suggest a common origin

Caravan, Ju, Hansen, Percival, Klippenstein et al., in preparation

> ¥ e & Carl Percival, (.R'E,t 2
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Chemical Composition of Particles after Ozonolysis

in collaboration with K. R. Wilson and M. Zeng (LBNL)

C,HgO

|
: +3 CI (CH,0,) -

) lon Cipho

[ C,H,0 I CH,O, ]
a4/ C,H,0 |
CoH,,0 |
AMWMAMANAANY | +3 CI(CH,0,) o +3 Cl (CH,0,) o
m o\ L +3 Cl (CH,0,) i | i
# CSH1OOT C4H1OOB |
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Hemier

175 200 225 250
mass-to-charge ratio

I I I = 4
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mass-to-charge ratio

N. Hansen, M. Zeng, K. R. Wilson, manuscript in preparation a



Molecular-Weight Growth in Extreme Environments

. Oxidation products

¢ oo @D cy §% 00
Graphltlc aggregates

Small ragmal"s"
\'.'\-‘.:’“ -8 ’\
Fuel + Oxidizer
& “aa % t.v-;‘

'R

“
L

H. A. Michelsen, Proc. Combust. Inst.,

2017, 36(1), 717-735

C3H3 + CSHE
CoHs + CH
CyHy + CoHs =-C i
C: _
+CH,

s
e ) \ L /
(; {; n=CgHj, + CH,
- -— C
= 7 FLonN
+ 3
=< 1 f N
i:-C4 + C2 -
—_ =—=C
‘_,-7 + + CH:}
O Dehydrogenation 7/ C i=CsH, + CH,

;-C"_HS + C2 2

v many different reactions can contribute towards benzene formation

v’ they all involve resonantly stabilized radicals

v’ the importance of these reactions depends on the fuel consumption pathways
v’ fulvene is an important intermediate

N. Hansen et al., Combust. Expl. Shock Waves, 2012, 48, 508-515 a



Molecular-Weight Growth:

C,H; Addition Mechanism — Indene Formation

(COHS)

| | H-abstractions

/ @\\J\\\H\enn\]inaﬁon 4
(C9H7) / (COH
H
—
/ H-abstractions
H eliminatio
@\) (C12H10)
(C9HS) Q

G. Kukkadapu, S. W. Wagnon, W. J. Pitz, N. Hansen, Proc. Combust. Inst., m
2021, 38(1), 1477-1485




Molecular-Weight Growth:
C,H; Addition Mechanism — Naphthalene Formation

\

59.5% 4

H-assisted /asmsted Gl

isomerization |somer|zat|on
Ring - B

closure \
l Summary:
@\;\/— @\A/ v' C;H, is an important intermediate to
abstractuons 7 # make 5- and 6-memberd ring

“ H-assisted structures beyond benzene
isomerization v’ aliphatically substituted aromatics are

H- \ important intermediates
elimination v C,H, is an important intermediate

G. Kukkadapu, S. W. Wagnon, W. J. Pitz, N. Hansen, Proc. Combust. Inst., 2021, 38(1), 1477-1485
N. Hansen, B. Yang, M. Braun-Unkhoff, A. Ramirez, G. Kukkadapu, Combust. Flame, 2022, in press



Molecular-Weight Growth:

Limitations of Photoionization Efficiency (PIE) Curves

0.3
g J(a)m flame-sampled CgHg PIE curve
= 0.2 PIE curves:
- Weighted sum
2 Indene
E —— Phenylallene
g 0.11 —— 1-Phenyl-1-Propyne
-C%D { — 3-Phenyl-1-Propyne
0.0 - r r r r
5 0.04- (b)m  flame-sampled PIE curve of C13H1q
« Weighted sum
%2‘ 0.03 { — 1H-benz[e]indene
g ———2-(prop-2-yn-1-yl)naphthalen
£ 0.02 { =/ 3H-benz[e]indene
— —— 1H-benz[flindene 4‘/
S o.0a

> Smaller differences in heats of formation and similar structural features result in
almost identical IE‘s and indistinguishable PIE curves for larger species

» |E‘s and PIE curves may not be known and need to be measured/calculated

@ G. Kukkadapu, S. W. Wagnon, W. J. Pitz, N. Hansen, Proc. Combust. Inst.,
2021, 38(1), 1477-1485




Molecular-Weight Growth:

Ring-Enlargement Reactions

+CH; CHs+C3Hy CaHy+CaHs
. 0.6,
065Y
+C,H, 31.3%
; \\-\ ’."“_:_‘.l.‘ 'r
+CH, L

M. Baroncelli, Q. Mao, S. Galle, N. Hansen, and H. Pitsch, Phys. Chem.
Chem. Phys., 2020, 22, 4699-4714
M. Baroncelli, Q. Mao, N. Hansen, H. Pitsch, Combust. Flame, 2021, 230,
111427
R. I. Kaiser and N. Hansen, J. Phys. Chem. A, 2021, 125, 3826-3840




Molecular—Weight Growth:

Summary
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R. I. Kaiser and N. Hansen, J. Phys. Chem. A, 2021, 125, 3826-3840
N. Hansen, B. Yang, M. Braun-Unkhoff, A. Ramirez, G. Kukkadapu,
Combust. Flame, 2022, in press




Isomeric C;H, Controls Five- vs. Six-Member PAH Ring Formation G'-'EE'L
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New Insights
ortho CH, group required for 2" ring formation

CHs
z e b
g + H,C=C=CH, —> & . !
3My
allene O +H + H whether (6,6) or (6,5) ring PAHs are formed.

Isomeric nature of C,H, reactant determines

* 5-member rings induce non-planarity in PAHs.
ortho-methylphenyl (6,6) (6,6) & P Y
miz 130 ignal from:
CHG — E-l:'lmﬁndma reference
mm= | 2-gihydronaphthalens reference
p _ =0= g-mathylphenyl + alleng
+ HG:G_GHg > O E‘ =0~ g-methylphanyl + propyne
propyne g +H £
- 8
(6,5) B
Five vs. six membered-ring PAH products from =
reaction of o-methylphenyl radical and two Cs;H,4 g
isomers¥ € | i
Cisin J. Shiels, 195 Matthew B. Prendergast, 0 £4° John D. Savee” 0 R e o o e ———— ————
David L. Osharn, (97 Craig A. Taatjes, (2 Stephen J. Blankshby, (9° |
Gabriel da Silva ™ and Adam J. Trevitt 5+ R NS RN RS NS NN N

78 8.0 a2 a4 B.6 B8 9.0 a2

2021, 25, 14913




Molecular-Weight Growth via Radical-Radical Reactions
Importance of Well-Skipping Reactions

Radical + Radical — |Adduct|” = Radical + Radical
c'; -CH, (H;z * (H: +H
| N . — — B
O &~ ol ot

0 ki/mol——— - -32 kJ/mol

Collisions

1600

&

1500 g
(]

1400 § :__E

1300 g §

g &

1200 S

1100 ’; '375 kJ/mOI

o Radical-propagating

Reactivation only required when caught in the “well”

Rate depends on temperature and pressure
D. E. Couch, A. J. Zhang, C. A. Taatjes, and N. Hansen,
@ CRE’L Angew. Chem. Int. Ed., 2021, 60, 27230-27235 m
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The Phenyl + Benzyl Reaction
5 o063

o G P

319

N

Energy
(kJ/mol)

Energy
(kJ/mol)

2000 Diphenylmethane
1500 ¢
E Benzyl /8
> 1000 ¢
E, Diphenylmethyl
500 ¢
0§

lon yield

Diphenylmethyl /8
| Triphenylmethane
L Triphenylmethyl

800 1000 1200 1400
Temperature (K)

D. E. Couch, A. J. Zhang, C. A. Taatjes, and N. Hansen,
M G
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Angew. Chem. Int. Ed., 2021, 60, 27230-27235



The Phenyl + Propargyl Reaction

C\"‘C.\_ 300 -
+H (-_;H:2 250 | a) Experiment

- C,Hg (Mm/z 116)
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N
o
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+
I
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o
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2
D

L ]
+H CH
01
0.6
* We cut well-skipping from the simulation 'R Full model
‘9 —CHg —CH;
* C4H, yield changes, no longer agrees with 204} o
experiment _5 No well-skipping
T |-=CeHg - —CoH,
@©
T 0.2f
@
* Conclusion — well-skipping is the dominant 2

source of C4H,, here

o 1000
" Though C4Hg yield is higher

0
800

B =" "
D

Peak Temperature (K)

M G QU D. E. Couch, G. Kukkadapu, A. J. Zhang, A. W. Jasper, C. A. Taatjes, N.

GAS PHASE CHEMICAL PHYSICS Hansen, Proc. Combust. Inst., 2022, accepted for presentation



The Phenyl + Propargyl Reaction

C"\"C 300 -
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M G QU D. E. Couch, G. Kukkadapu, A. J. Zhang, A. W. Jasper, C. A. Taatjes, N.
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Possible next steps

e Different reactor materials to
allow measurements in oxidizing
environments

e Application of tandem mass
spectrometric diagnostics for
more detailed speciation

(1) sanyesadwia)
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Signal Intensity / a.u.

Extreme Low-Temperature Combustion (ELTC):
Ozone-Initiated Oxidation of Methyl Hexanoate

Evidence of differing chemical pathways between ELTC and

LTC species are observed » C,Hg0and C,H 0, have differing profiles at

different ionization energies

CiHsO 1 v Suggests different isomers are appearing
i--95eV . .
—— 1106V in each regime
v' These species being fragments is unlikely
o at these lower energies and with larger

RS species —do not match profiles of fuel or
—11.0eV major intermediates

» More work and a detailed model are needed to
e F—r e try and identify these species, which is hard
450 500 550 600 650 700 750 800 450 500 550 600 650 700 750 800 .
Temperature / K Temperature / K with larger molecular structures

.

@ CR. E,t A. Rousso et al., J. Phys. Chem. A, 2020, 124, 9897-9914 a
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Low-Temperature Oxidation Chemistry of
Dimethyl Ether (DME)

CH;0CH,
dimmettyl athar (OME) (
f o€ C,H O 4
CH;0CH; ’CHZO | 1
=
15t 0,-Addition 4 ]
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K Tz
CH,0CH,00H CH, S L =
|| 2™ 0,-Addition f} +02 = C,H,0,
()] d
ODCHZTHEOOH CHIT')O 5 C,H,0, x
-0OH
L CH,0, \ d
HCOOOH HOOCH;OCHO| =—= | HCOOH CH400H Hzoz
performic acid 'c'_?' hydropercxymethyl formic acid methyl ‘
“Hz formate (HPMF) hydroperoxide L ‘ o
1[ Korcek Decomposition ‘/ CH203
o
HOCOOH | === == [ HCOOH
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HO

m/z

@ @E,t K. Moshammer et al., J. Phys. Chem. A, 2015, 119, 7361-7374 a
K. Moshammer et al., J. Phys. Chem. A, 2016, 120, 7890-7901
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Low-Temperature Oxidation Chemistry of

Dimethyl Ether (DME)

CH3OCH,
dimethyl ather (DME)
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m GE=A
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e
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K. Moshammer et al., J. Phys. Chem. A, 2015, 119, 7361-7374
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H. Liao et al., Combust. Flame, 2020, 214, 277-286
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Highly Oxygenated Molecules (HOM):

From Gas-Phase Oxidation to Atmospheric Aerosol
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Highly Oxygenated Organic Molecules (HOM) from Gas-Phase
Autoxidation Invelving Peroxy Radicals: A Key Contributor to
Atmospheric Aerosol
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