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Distributed Energy Resource (DER) integration is reliant on 1) data,

2) power system models, and 3) software tools for planning or
implementing controls

Recent additions of Advanced Metering Infrastructure (AMI), or

smart meters, provide measurements of each customer’s power
consumption, and possibly other quantities, such as voltage and
reactive power

* Brings new opportunities and new challenges
 What does this mean for integration of DER?

The distribution system is getting more complicated with the
proliferation of DER, and new control strategies applied to the
distribution system with participation from electric vehicles,
rooftop PV, energy storage, microgrids, etc.

Power Systems—and specifically distribution systems— are a
perfect application for Machine Learning due to their complexity
and large amounts of data

How do we leverage sensor data for rapid and reliable integration of DER into the distribution system?
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Data includes both real-time measurements and grid parameters

System measurements include things like SCADA, AMI, and
phasor measurement unit (PMU) data that are constantly
streaming and updating. Issues incorporating these data
streams include:

e Data quality issues such as missing data

e Big data problems for storing and accessing (many utilities
have not updated their database structures, which makes data
queries incredibly slow)

e Communication network constraints

e Limitations based on initial use (for example AMI that was
installed for billing, so many not be useful to real-time
applications).

Grid parameters such as line lengths, transformer
impedances, and governor settings do not change as often
 Challenging to exactly match all the values that are in the field

* Errors due to manual data entry or unknown estimated values
is common
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Other Data Quality Issues:

*» Measurement Interval and Time
Synchronization

Measurement Type (instantaneous vs. average)
Meter Resolution (decimals)

Measurement Noise

Missing Data

Erroneous Data

Calibration or Installation Errors
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For improved DER interconnection planning and control, we need new tools that will
incorporate data into the physics-based models

We can now move well beyond conventional static peak load DER studies to include historical
feeder data and detailed models of DER controls and expected behavior

Use Cases Presented Today:
Data-driven model calibration

Algorithm scaling challenges —>[ "hvljjlf)-‘;;ised]

Detecting PV settings and mis-operations ”[e ey ¥ ovel mgorithms | e Resolution
] . . ! ! & = > L

Model-free hosting capacity analysis P, Y. - ] ? R

Data-Driven
Approach
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Conventional Methods Physics-Based Data-Driven Modeling
manual data entry — compiling records of \ ﬁeveraging AMI data and other grid edge \
installations, upgrades, and maintenance sensing to derive and validate system models

over decades

Prone to errors —unlogged or erroneous High accuracy and fidelity — a reproduction
maintenance reports or entry into the model faithful to the original
Little validation with measurements Granular and high resolution, multi-phase

model down to the low-voltage system

Often out of date with a list of changes to Model dynamically adapts and automatically
add to the model updates based on system conditions

RN /

Key Takeaway: Conventional distribution modeling methods are no longer sufficient for high penetrations of DER
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Challenge — Modern distribution analysis algorithms and tools are continually improving
(hosting capacity analysis, QSTS, and DERMS) but use feeder models based on manual data
entry that is prone to error and often out of date with little validation or calibration

Need — Models that provide a
more granular understanding
of the distribution system and
substantially increase the

precision and accuracy of 7 _
planning and operation tools ' :;::;;'::tiz,.iﬁz;";;*:ﬂ |

| Customer Transformers
Identify which transformer
each meter is connected to

Determine the controls and state of
distribution automation equipment

.
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[Setting and State Determination
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topology of the low-
voltage system

Solution — Use sensors and
historical measurements

]

Detailed Load Modeling
Improved spatial and temporal
resolution for phase-specific,
voltage-sensitive load models |s&=sends

/C‘:
Reconfiguration 2
Detect the state of /
switches, including load ’

transfers to other feeders |/,

|

through the distribution _ D [D_Ietectdﬁ&c'?,ﬁ?%ﬁtl‘g’;n@ze,] =
. . 2 | tilt, and azimuth) and settings ?//0
system, combined with N =2 L =

Phase Identification

Identify the phase of laterals and
phase of single-phase transformers

PV Dynamic Modeling {| |
Determine dynamic . \W
model parameters for PV -

physics-based machine

learning, to detect modeling [
errors and calibrate 3
parameters SOLAR ENERGY
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Need — Data-driven algorithms need to be accessible by
the stakeholders

Challenge — Algorithm implementation interfaces and

Phase Identification Dashboard Interface

Model Input

real-world data problems
* Input checking (parameters and data) =
. {Dctcte J un vod
 Database infrastructure and query speed
* Dataissues — missing data, meter resolution, customers Phase Identification Wiki in the open-source github

on wrong feeder, changing meter/customer numbers ~__ repository for OMF

* Field verification is difficult, especially underground I——
areas and areas with a large number of meters e

* Uncertainty quantification for confidence in predictions Models - phaseld
IS key e e e -
Solution — Phase identification algorithms have been
implemented with NRECA in the Open Modeling
Framework (OMF) at http://omf.coop, and working with
a utility to get it directly into their operational software
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What are the quantifiable benefits of correcting errors in the
distribution system model?

Comparing measured AMI voltage and estimated AMI voltage

* Measured Voltage: The collected AMI voltage measurements

* Estimated Voltage: The voltage measurements estimated by
running a QSTS simulation using the distribution system model
and the collected AMI power measurements

Demonstrates the improvements in estimated voltage due to
correcting phase labels (~0.75V on average) when doing QSTS
simulations for planning, or other purposes

Shows that there are still opportunities for further
improvements to the model
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Mean Absolute Error (MAE) for the voltage
difference between the measured and simulated
voltages at 15-minute resolution over a year

Provides quantifiable analysis of the impact of improvements to the distribution system model and thus DER planning tasks that use that model
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Errors in the distribution system model that cause small changes to voltage can have

significant impacts on hosting capacity

Below is shown the change in voltage-constrained hosting capacity (VC-HC) for each

customer location due to a modeling error
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J. A. Azzolini, S. Talkington, M. J. Reno, S. Grijalva, L. Blakely, D. Pinney, and S. McHann, “Improving Behind-the-Meter
PV Impact Studies with Data-Driven Modeling and Analysis”, IEEE Photovoltaic Specialists Conference (PVSC), 2022.

A VC-HC (%)
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n Error Type

Service Xfmr Size
Xfmr/Customer Pairing
Missing Existing PV

Missing Existing PV w/ Volt-
VAR

Phase Labeling Errors

Service Line Lengths

Substation LTC Malfunction

Capacitor Malfunction

Data-driven methods can
help to improve the
accuracy of DER integration
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Challenge — PV systems may vary from the interconnection plan
- not interconnected, project delayed, changed size, shading 2 -2
issues, gradual soiling, or module/string failures.

* Information for existing PV system may not be known (DC power Pusinverter

rating, tilt, or azimuth) and settings like power factor, volt-var, Conrol
and ride-throughs may change

Need — Methods to keep PV interconnection databases
updated and extract parameters for behind-the-meter PV
systems that are lacking direct measurements or observability

giet (kVAR)

Control
Parameters? -3
Injection
State?
Power Factor?

220 230 240 250 260
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Solution — For BTM PV, solar disaggregation methods can

separate the PV from the load measurements. Machine

learning can detect if there is PV, along with size, tilt, azimuth.
* Identifying advanced inverter control parameters, behavior, and

dynamic response characteristics, including any mis-operations
that are different than planned

qPet (kVAR)
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* C.C. Sun, M. Korkali, E. M. Stewart, V. Donde, and M. J. Reno, "Optimization-Based Calibration of Aggregated Dynamic Models for Distributed Energy Resources" IEEE PES General Meeting, 2021.
* S. Talkington, S. Grijalva, M. J. Reno, and J. A. Azzolini, “Solar PV Inverter Reactive Power Disaggregation and Control Setting Estimation”, IEEE Transactions on Power Systems, 2022.
» S. Talkington, S. Grijalva, and M. J. Reno, “Estimation of DER Power Factor Using Voltage Magnitude Measurements” Journal of Modern Power Systems and Clean Energy, 2021.
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Model-free Hosting Capacity Analysis Notlong

Laboratories

*  Challenge — Distributed Energy Resource (DER) interconnection has been significantly improved

by access to hosting capacity maps, but these maps are time-consuming and computationally
intensive.

* Need — Methods that are more accessible to utilities and coops to produce hosting capacity
maps that update more regularly and are less reliant on having detailed power flow models

*  Solution — Data-driven hosting capacity maps based on learning historical correlations between
load and voltages throughout the distribution system

Speed and Scalability of Generating HC Maps

ANSI Limit
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Big Data, Machine Learning, and advanced software tools are significantly improving the
accuracy of DER interconnection planning and visibility into operations.

Data introduces a lot of challenges (communication, storage, bad data detection), but provides
avenues for entirely data-driven algorithms that improve efficiency

We need more automated software tools for processing interconnections and handling data
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