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Introduction

• Distributed Energy Resource (DER) integration is reliant on 1) data, 
2) power system models, and 3) software tools for planning or 
implementing controls

• Recent additions of Advanced Metering Infrastructure (AMI), or 
smart meters, provide measurements of each customer’s power 
consumption, and possibly other quantities, such as voltage and 
reactive power
• Brings new opportunities and new challenges
• What does this mean for integration of DER?

• The distribution system is getting more complicated with the 
proliferation of DER, and new control strategies applied to the 
distribution system with participation from electric vehicles, 
rooftop PV, energy storage, microgrids, etc.

• Power Systems—and specifically distribution systems— are a 
perfect application for Machine Learning due to their complexity 
and large amounts of data

2How do we leverage sensor data for rapid and reliable integration of DER into the distribution system?



Practical Considerations for Real Data

Data includes both real-time measurements and grid parameters
• System measurements include things like SCADA, AMI, and 

phasor measurement unit (PMU) data that are constantly 
streaming and updating. Issues incorporating these data 
streams include:
• Data quality issues such as missing data
• Big data problems for storing and accessing (many utilities 

have not updated their database structures, which makes data 
queries incredibly slow)

• Communication network constraints
• Limitations based on initial use (for example AMI that was 

installed for billing, so many not be useful to real-time 
applications).

• Grid parameters such as line lengths, transformer 
impedances, and governor settings do not change as often
• Challenging to exactly match all the values that are in the field
• Errors due to manual data entry or unknown estimated values 

is common
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Other Data Quality Issues:
❖ Measurement Interval and Time 

Synchronization
❖ Measurement Type (instantaneous vs. average)
❖ Meter Resolution (decimals)
❖ Measurement Noise
❖ Missing Data
❖ Erroneous Data
❖ Calibration or Installation Errors



Using Data for Analyzing DER Interconnections

• For improved DER interconnection planning and control, we need new tools that will 
incorporate data into the physics-based models

• We can now move well beyond conventional static peak load DER studies to include historical 
feeder data and detailed models of DER controls and expected behavior

Use Cases Presented Today:

• Data-driven model calibration

• Algorithm scaling challenges

• Detecting PV settings and mis-operations

• Model-free hosting capacity analysis

4

Physics-Based 

Models

Data-Driven 

Approach

AMI, SCADA, 

PMU, PV, ...

Field Measurements

&

High-Resolution 
Accurate 

Distribution 
System Models

Novel Algorithms



Conventional Methods

Distribution Modeling Methods
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•Manual data entry – compiling records of 
installations, upgrades, and maintenance 
over decades

•Prone to errors – unlogged or erroneous 
maintenance reports or entry into the model

• Little validation with measurements

•Often out of date with a list of changes to 
add to the model

• Leveraging AMI data and other grid edge 
sensing to derive and validate system models

•High accuracy and fidelity – a reproduction 
faithful to the original

•Granular and high resolution, multi-phase 
model down to the low-voltage system

•Model dynamically adapts and automatically 
updates based on system conditions

Physics-Based Data-Driven Modeling

Key Takeaway: Conventional distribution modeling methods are no longer sufficient for high penetrations of DER



Data-Driven Model Calibration

• Challenge – Modern distribution analysis algorithms and tools are continually improving 
(hosting capacity analysis, QSTS, and DERMS) but use feeder models based on manual data 
entry that is prone to error and often out of date with little validation or calibration
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PV Dynamic Modeling
Determine dynamic 

model parameters for PV
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Detailed Load Modeling
Improved spatial and temporal 
resolution for phase-specific, 
voltage-sensitive load models
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• Need – Models that provide a 
more granular understanding 
of the distribution system and 
substantially increase the 
precision and accuracy of 
planning and operation tools

• Solution – Use sensors and 
historical measurements 
through the distribution 
system, combined with 
physics-based machine 
learning, to detect modeling 
errors and calibrate 
parameters



Implementing Phase Identification

• Need – Data-driven algorithms need to be accessible by 
the stakeholders

• Challenge – Algorithm implementation interfaces and 
real-world data problems
• Input checking (parameters and data)

• Database infrastructure and query speed

• Data issues – missing data, meter resolution, customers 
on wrong feeder, changing meter/customer numbers

• Field verification is difficult, especially underground 
areas and areas with a large number of meters

• Uncertainty quantification for confidence in predictions 
is key

• Solution – Phase identification algorithms have been 
implemented with NRECA in the Open Modeling 
Framework (OMF) at http://omf.coop, and working with 
a utility to get it directly into their operational software
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Phase Identification Dashboard Interface

Phase Identification Wiki in the open-source github
repository for OMF

mailto:http://omf.coop


Simulation vs. Measured Data

• What are the quantifiable benefits of correcting errors in the 
distribution system model?

• Comparing measured AMI voltage and estimated AMI voltage
• Measured Voltage: The collected AMI voltage measurements

• Estimated Voltage:  The voltage measurements estimated by 
running a QSTS simulation using the distribution system model 
and the collected AMI power measurements

• Demonstrates the improvements in estimated voltage due to 
correcting phase labels (~0.75V on average) when doing QSTS 
simulations for planning, or other purposes 

• Shows that there are still opportunities for further 
improvements to the model
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Provides quantifiable analysis of the impact of improvements to the distribution system model and thus DER planning tasks that use that model 

Mean Absolute Error (MAE) for the voltage 
difference between the measured and simulated 

voltages at 15-minute resolution over a year



Model Errors Impact DER Integration

• Errors in the distribution system model that cause small changes to voltage can have 
significant impacts on hosting capacity

• Below is shown the change in voltage-constrained hosting capacity (VC-HC) for each
customer location due to a modeling error

9J. A. Azzolini, S. Talkington, M. J. Reno, S. Grijalva, L. Blakely, D. Pinney, and S. McHann, “Improving Behind-the-Meter 
PV Impact Studies with Data-Driven Modeling and Analysis”, IEEE Photovoltaic Specialists Conference (PVSC), 2022.

# Error Type

A.1 Service Xfmr Size

A.2 Xfmr/Customer Pairing

A.3 Missing Existing PV

A.4
Missing Existing PV w/ Volt-

VAR

A.5 Phase Labeling Errors

A.6 Service Line Lengths

A.7 Substation LTC Malfunction

A.8 Capacitor Malfunction

Data-driven methods can 
help to improve the 

accuracy of DER integration



Detecting PV Settings and Mis-Operations

• Challenge – PV systems may vary from the interconnection plan 
- not interconnected, project delayed, changed size, shading 
issues, gradual soiling, or module/string failures.

• Information for existing PV system may not be known (DC power 
rating, tilt, or azimuth) and settings like power factor, volt-var, 
and ride-throughs may change

• Need – Methods to keep PV interconnection databases 
updated and extract parameters for behind-the-meter PV 
systems that are lacking direct measurements or observability

• Solution – For BTM PV, solar disaggregation methods can 
separate the PV from the load measurements. Machine 
learning can detect if there is PV, along with size, tilt, azimuth.

• Identifying advanced inverter control parameters, behavior, and 
dynamic response characteristics, including any mis-operations 
that are different than planned
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Systems
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Precise detection of BTM PV settings is key under high-penetrations of DER and increasing usage of volt-var control



Model-free Hosting Capacity Analysis

• Challenge – Distributed Energy Resource (DER) interconnection has been significantly improved 
by access to hosting capacity maps, but these maps are time-consuming and computationally 
intensive.

• Need – Methods that are more accessible to utilities and coops to produce hosting capacity 
maps that update more regularly and are less reliant on having detailed power flow models

• Solution – Data-driven hosting capacity maps based on learning historical correlations between 
load and voltages throughout the distribution system
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Iterative
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Data-Driven

Pros:
- No grid modeling 

required
- No simulations 

required
- New functionality
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- Requires smart 

meter data

Speed and Scalability of Generating HC Maps

Model-Based Model-Free
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Hosting Capacity 
(19 kW)

Historical AMI Data 
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Accurate knowledge of the ever-evolving hosting capacity maps is crucial for rapid DER interconnection



Conclusions

• Big Data, Machine Learning, and advanced software tools are significantly improving the 
accuracy of DER interconnection planning and visibility into operations.

• Data introduces a lot of challenges (communication, storage, bad data detection), but provides 
avenues for entirely data-driven algorithms that improve efficiency

• We need more automated software tools for processing interconnections and handling data
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Questions?

Matthew J. Reno

mjreno@sandia.gov
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