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What is the useful lifetime of a component in a humid, chloride
environment?

morphology of corrosion damage as a function of time
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The cost of corrosion in the US is estimated at 1-3% of our GDP, yet we lack an ability to predict the distribution and i
i
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, A key challenge for materials science is “the ability to predict the lifetime
How fast does this happen? Why f metal d ts £ hort-t . tal ion data.”
does it happen in some cases and of metals and components from short-term experimental corrosion data.
not others? — E McCafferty, Introduction to corrosion science, 2010




Current approaches to measuring kinetics generally focus on the
3 I continuum scale or very controlled environments...
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Atmospheric test rack from https://www.corrosion-

doctors.org/Corrosion-Atmospheric/Corrosion-tests.html
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driven by “outliers”

but failure is usually I
i

environment

Solution - the field of ductile
failure overcame a similar
problem using XCT. Why not try
this with corrosion?
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How is XCT being used in the field of corrosion science?
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Combining in-situ XCT with ex-situ characterization
5 I techniques can provide new insights into p|t growth Kinetics
and controlling factors O S S U SR YR
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Pit Volume (um?)

‘ How do pit growth kinetics evolve in 4N-Al?
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Material and Environment

*  Material — 1.02 mm diameter Al wire (99.99%
Al)

*  Printed with NaCl at 200 ug/cm?

*  Humidity - 84 RH

XCT Characterization Methods

*  1.25 mm length of wire imaged with XCT
periodically using a 1.25 um voxel size (15.6
um?® minimum feature size)

* 4 Samples exposed under these conditions

*  Each sample scanned every 1.3 hours for at
least the first 90 hrs. after exposure, then
periodically for the next year
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Relatively continuous growth is followed by stepped
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‘ Droplet spreading affects pit growth kinetics

o Droplet spreading, caused by oxygen reduction or
134 o1 metal ion production, was observed for four pit

. s 0 " o This likely increased cathode size and/or local
Rate (um’/hr) efficiency, changing the rate of pit growth
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The mode of pit growth can also change, leading to

' changes in growth kinetics

Mode 1 — pits primarily add volume by some combination of creating new tendrils and the

lengthening of pre-existing tendrils.
Mode 2 — existing tendrils expand radially, no new tendrils form
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o ‘ Why two different growth modes?
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Cyclical polarization experiments show that pitting in Al (and some
other passive alloys) is associated with three critical potentials:
Epit’ Eptp’ and Eprot

Early work showed that E ; is related to repassivation but it
remains obscure (a) -740 mVce (E i, +50mV) (b) -790 mVce (Epy)

Potentiostatic holds above and below E , in a similar Al material
show that pit morphology above and below E i, resembles those
observed for mode 1 and mode 2 growth

We speculate that the two growth modes result from the
potential within the pit dropping below E



Pit morphology appears to be mfluenced stro
mlcrostructure
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« Serial sectioning of a pit after repassivation
showed that tendrils grow along grain
boundaries and dislocation boundaries

« Large, elongated tendrils followed a grain
boundary triple junction and a high-angle
boundary
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_ | Conclusions

- Droplet spreading altered the rate of pit growth
o Two growth modes identified:

oMode 1 — pits primarily add volume by some combination of creating new tendrils and the lengthening of pre-
existing tendrils.

o Mode 2 — existing tendrils expand radially, no new tendrils form

o A clear decrease in the rate of pit growth was observed during the
transition from mode 1 to mode 2 growth

o 3D serial sectioning demonstrated that pit morphology strongly depends
on local microstructure
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