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*Figure from https://www.rechargenews.com/wind/will-wind-wake-slow-industrys-ambitions-offshore-/2-1-699430
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SNOWPAC*

OUU problem statement

R∗θ = R f (x∗,θ ) =
Rc

θ
(x)≤0
min

Rc(x,θ)≤0
R f (x,θ )

Features of SNOWPAC:
0. Extension of NOWPAC†: Derivative-free nonlinear constraint optimization method using

trust-regions (deterministic)

1. Estimate robustness measures: Use sampling, e.g.

2. Implement new trust region management: Account for noise εN in objective/constraint

evaluations

3. Introduce Gaussian process surrogates: Mitigate effect of noise εN

4. Feasibility restoration mode

†F. Augustin, YMM, NOWPAC: A provably convergent derivative-free nonlinear optimizer with path-augmented constraints, 2015
*FM, F. Augustin, HJB, YMM, A trust-region method for derivative-free nonlinear constrained stochastic optimization. 2022,

Submitted
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MLMC estimator: Mean
Mean in OUU:

min
x

RE ≈min
x

µ̂ML
1 [Q(x ,θ )]

• Estimator*:

E[QL] = µ
ML
1 [QL]≈ µ̂ML

1 [QL] =
L

∑
`=0

µ̂1[Q(`)−Q(`−1)]︸ ︷︷ ︸
telescopic sum

=
L

∑
`=0

1
N`

N`

∑
i=1

(Q(`)
i −Q(`−1)

i,` )︸ ︷︷ ︸
estimator expansion

, Q(−1)
i,0 := 0

• Sample allocation:

min
NE
`

L

∑
`=0

C`NE
` ,

s.t. V[µ̂ML
1 ] = ε

2, where V[µ̂ML
1 ] =

L

∑
`=0

V[µ̂(`)
1 − µ̂

(`−1)
1,` ] =

L

∑
`=0

V[Q(`)−Q(`−1)]

N`

• Solution:

NE
` =

λ

√
V[Q`−Q`−1]

C`

 , where λ = ε
−2

L

∑
`=0

√
V[Q`−Q`−1]C`

*Giles, M.B., "Multilevel Monte Carlo methods,” Acta Numerica, Vol.24, 2015, p.259–328
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MLMC estimator: Standard deviation
Mean in OUU:

min
x

RE ≈min
x

µ̂ML
1 [Q(x ,θ )]

Standard deviation in OUU:

min
x

RS ≈min
x

µ̂ML
1 [Q(x ,θ )]+ασ̂ ML

biased[Q(x ,θ )]
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MLMC estimator: Standard deviation
• Estimator:

σ [QL] =
√
V[QL]≈

√
µ̂ML

2 := σ̂ ML
biased

where
V[QL]≈ µ̂ML

2 [QL] =
L

∑
`=0

µ̂2[Q(`)]− µ̂2[Q(`−1)]︸ ︷︷ ︸
telescopic sum

=
L

∑
`=0

1
N`−1

( N`

∑
i=1

(Q(`)
i − µ̂

(`)
1 )2− (Q(`−1)

i,` − µ̂
(`−1)
1,` )2

)
︸ ︷︷ ︸

estimator expansion

=
L

∑
`=0

(µ̂
(`)
2 − µ̂

(`−1)
2,` ), Q(−1)

i,0 := 0

• Sample allocation:
min
Nσ
`

L

∑
`=0

C`Nσ
` ,

s.t. V[σ̂ ML
biased] = ε

2, where V[σ̂ ML
biased]≈

1
4
V[µ̂ML

2 ]

µ̂ML
2

(Delta Method)

• Solve this via numerical optimization or via an analytic approximation†.

†M. Pisaroni, S. Krumscheid, F. Nobile, Quantifying uncertain system outputs via the multilevel Monte Carlo method - Part I: Central moment
estimation, 2020, JCP
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MLMC estimator: Scalarization
Mean in OUU:

min
x

RE ≈min
x

µ̂ML
1 [Q(x ,θ )]

Scalarization in OUU:

min
x

RS ≈min
x

µ̂ML
1 [Q(x ,θ )]+ασ̂ ML

biased[Q(x ,θ )]
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MLMC estimator: Scalarization
• Estimator:

S[QL] := E[QL]+ασ [QL]≈ µ̂ML
1 +ασ̂ ML

biased := ζ̂ ML

• Sample allocation:

min
NS
`

L

∑
`=0

C`NS
` ,

s.t. V[ζ̂ ML] = ε
2, where V[ζ̂ ML]≈ V[µ̂ML

1 +ασ̂ ML
biased]

• Variance of scalarization:

V[ζ̂ ML] = V[µ̂ML
1 +ασ̂ ML

biased]

= V[µ̂ML
1 ]+α

2V[σ̂ ML
biased]+2αCov[µ̂ML

1 , σ̂ ML
biased]

• Solve this via numerical optimization or via an analytic approximation.
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• Sample allocation:
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NS
`

L

∑
`=0
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2, where V[ζ̂ ML]≈ V[µ̂ML

1 +ασ̂ ML
biased]

• Variance of scalarization:

V[ζ̂ ML] = V[µ̂ML
1 +ασ̂ ML

biased]

= V[µ̂ML
1 ]︸ ︷︷ ︸

known

+α
2V[σ̂ ML

biased]︸ ︷︷ ︸
known

+2α Cov[µ̂ML
1 , σ̂ ML

biased]︸ ︷︷ ︸
derived but not discussed tdy

• Solve this via numerical optimization or via an analytic approximation.
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SNOWPAC in Dakota using MLMC

TRM Surrogate
Optimization

Feasibility
Restoration

Monte Carlo

Dakota
OUU loop


Black-box solver


Forward UQ


SNOWPAC
Derivative-free optimization


...

Design Statistics

UQ Samples

Multilevel Monte
Carlo

Algorithmic details:
• Iterative sample allocation

• Underrelaxation

• Choice of sample allocation strategy: Analytic approximation vs. numerical optimization

• Choice of covariance approximation: Pearson vs. Bootstrap vs. Correlation Lift
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Rosenbrock

min
x ,y

r(x ,y) = min
x ,y

100(y −x2)2+(1−x)2
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Rosenbrock
min
x ,y

E[r(x ,y)+ I2(Z )] min
x ,y

E[r(x ,y)+ I2(Z )]+3σ [r(x ,y)+ I2(Z )]

I2(Z1,Z2,Z3) = sin(Z1)+a sin(Z2)
2+bZ 4

3 sin(Z1)−a/2,{Zi ∼U (−π,π)}3
i=1

I1(Z1,Z2,Z3) = sin(Z1)+0.85a sin(Z2)
2+bZ 4

3 sin(Z1)−0.85a/2,

I0(Z1,Z2,Z3) = sin(Z1)+0.6a sin(Z2)
2+9bZ 2

3 sin(Z1)−0.6a/2.
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Rosenbrock results: Mean
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Rosenbrock results: Mean
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Rosenbrock results: Mean
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Rosenbrock results: Scalarization
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Rosenbrock results: Scalarization
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Rosenbrock results: Scalarization
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Wind plant application
Setup:

• five NREL 5 MW turbines (RD 126 m, HH 90 m)
• RANS model with actuator disk turbine representation using WindSE (https://github.com/NREL/WindSE)

Parameters: (Turbine i = 1, 2, 3)

• Yaw angle design:

{γi}5
i=1 ∈ [−45◦,45◦]

• Inflow wind speed: θu ∼N (7.5m
s ,1

m
s )

• Inflow wind direction: θw ∼N (45◦,5◦)

OUU Scalarization:

max
{γi}5i=1

RS := max
{γi}5i=1

E[Ptotal(·)]−3σ [Ptotal(·)]
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(a) COARSE (DoF 27760) (b) MEDIUM (DoF 130208) (c) FINE (DoF 376808)
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Wake steering results
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Wake steering results
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Conclusion
⇒ New MLMC estimators for Standard Deviation and Scalarization coupled with SNOWPAC in

Dakota.

⇒ Start of OUU results for wind application.

Future work and open questions:

• Short term: Figure out issues

• Long term: Introduce more uncertainty

Links:

• SNOWPAC: github.com/snowpac/snowpac

• Dakota: dakota.sandia.gov

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia
LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under
contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.
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