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OUU problem statement

Ry =R (x*,0) = %C{Qig)<0%f (x,0)

Features of SNOWPAC:
0. Extension of NOWPACT: Derivative-free nonlinear constraint optimization method using

trust-regions (deterministic)

TF. Augustin, YMM, NOWPAC: A provably convergent derivative-free nonlinear optimizer with path-augmented constraints, 2015
*FM, F. Augustin, HJB, YMM, A trust-region method for derivative-free nonlinear constrained stochastic optimization. 2022,

Submitted
Friedrich Menhorn (TUM), et al. | menhorn@in. tum.de | MLMC estimators for derivative-free optimization under uncertainty

4


mailto:menhorn@in.tum.de

Scientific Computing
Department of Informatics

Technical University of Munich

SNOWPAC®

OUU problem statement

Ry =R (x*,0) = %C{Qig)<0%f (x,0)

Features of SNOWPAC:
0. Extension of NOWPACT: Derivative-free nonlinear constraint optimization method using

trust-regions (deterministic)

1. Estimate robustness measures: Use sampling, e.g.

R = Elfg()] ~ R = F TN, 1(x,6) + en

TF. Augustin, YMM, NOWPAC: A provably convergent derivative-free nonlinear optimizer with path-augmented constraints, 2015
*FM, F. Augustin, HJB, YMM, A trust-region method for derivative-free nonlinear constrained stochastic optimization. 2022,

Submitted
Friedrich Menhorn (TUM), et al. | menhorn@in. tum.de | MLMC estimators for derivative-free optimization under uncertainty

4


mailto:menhorn@in.tum.de

Scientific Computing
Department of Informatics

Technical University of Munich

SNOWPAC®

OUU problem statement

Ry =R (x*,0) = %C{Qig)<0%f (x,0)

Features of SNOWPAC:
0. Extension of NOWPACT: Derivative-free nonlinear constraint optimization method using

trust-regions (deterministic)

1. Estimate robustness measures: Use sampling, e.g.

By =Elf(¥)] ~ R = Yf o i L (F1(x,6) — 11 (x,6)) + en

TF. Augustin, YMM, NOWPAC: A provably convergent derivative-free nonlinear optimizer with path-augmented constraints, 2015
*FM, F. Augustin, HJB, YMM, A trust-region method for derivative-free nonlinear constrained stochastic optimization. 2022,

Submitted
Friedrich Menhorn (TUM), et al. | menhorn@in. tum.de | MLMC estimators for derivative-free optimization under uncertainty

4


mailto:menhorn@in.tum.de

Scientific Computing
Department of Informatics

Technical University of Munich

SNOWPAC®

OUU problem statement

Ry =R (x*,0) = %C{Qig)@%f (x,0)

Features of SNOWPAC:
0. Extension of NOWPACT: Derivative-free nonlinear constraint optimization method using

trust-regions (deterministic)
1. Estimate robustness measures: Use sampling, e.g.
N, _
%f p— E[f@(X)] ~ Rf —= Zé:O Nigzi:£1 (fg(x, 9,) - fg 1(X, 9,)) + £N
2. Implement new trust region management: Account for noise &y in objective/constraint

evaluations

TF. Augustin, YMM, NOWPAC: A provably convergent derivative-free nonlinear optimizer with path-augmented constraints, 2015
*FM, F. Augustin, HJB, YMM, A trust-region method for derivative-free nonlinear constrained stochastic optimization. 2022,

Submitted
Friedrich Menhorn (TUM), et al. | menhorn@in. tum.de | MLMC estimators for derivative-free optimization under uncertainty

4


mailto:menhorn@in.tum.de

Scientific Computing
Department of Informatics

Technical University of Munich

SNOWPAC®

OUU problem statement

Ry =R (x*,0) = %C{Qig)@%f (x,0)

Features of SNOWPAC:
0. Extension of NOWPACT: Derivative-free nonlinear constraint optimization method using

trust-regions (deterministic)
1. Estimate robustness measures: Use sampling, e.g.
Y = Elfa(x)] = R = Lf_o 7 L (F(x, 6) — F71(x, 6)) + en
2. Implement new trust region management: Account for noise &y in objective/constraint
evaluations

3. Introduce Gaussian process surrogates: Mitigate effect of noise ey

TF. Augustin, YMM, NOWPAC: A provably convergent derivative-free nonlinear optimizer with path-augmented constraints, 2015
*FM, F. Augustin, HJB, YMM, A trust-region method for derivative-free nonlinear constrained stochastic optimization. 2022,

Submitted
Friedrich Menhorn (TUM), et al. | menhorn@in. tum.de | MLMC estimators for derivative-free optimization under uncertainty

4


mailto:menhorn@in.tum.de

Scientific Computing
Department of Informatics

Technical University of Munich

SNOWPAC®

OUU problem statement

Ry =R (x*,0) = %C{Qig)Q%f (x,0)

Features of SNOWPAC:
0. Extension of NOWPACT: Derivative-free nonlinear constraint optimization method using

trust-regions (deterministic)
1. Estimate robustness measures: Use sampling, e.g.
Y = Elfa(x)] = R = Lf_o 7 L (F(x, 6) — F71(x, 6)) + en
2. Implement new trust region management: Account for noise &y in objective/constraint
evaluations
3. Introduce Gaussian process surrogates: Mitigate effect of noise ey

4. Feasibility restoration mode

TF. Augustin, YMM, NOWPAC: A provably convergent derivative-free nonlinear optimizer with path-augmented constraints, 2015
*FM, F. Augustin, HJB, YMM, A trust-region method for derivative-free nonlinear constrained stochastic optimization. 2022,

Submitted
Friedrich Menhorn (TUM), et al. | menhorn@in. tum.de | MLMC estimators for derivative-free optimization under uncertainty

4


mailto:menhorn@in.tum.de

Scientific Computing
Department of Informatics

Technical University of Munich

Design

(¥

/ Dakota

OUU loop

" SNOWPAC )

Derivative-free optimization

Surrogate : I Feasibility

:: Optimization : Restoration

Monte Carlo Multilevel Monte
Carlo

UQ Samples

N

Statistics

)

Friedrich Menhorn (TUM), et al. | menhorn@in. tum.de | MLMC estimators for derivative-free optimization under uncertainty

5


mailto:menhorn@in.tum.de

Scientific Computing
Department of Informatics

Technical University of Munich

Design

(¥

/ Dakota

OUU loop

( SNOWPAC )

Derivative-free optimization

"1 Surrogate : I Feasibility

:: Optimization : Restoration

Monte Carlo Multilevel Monte
Carlo

UQ Samples

N

Statistics

)

Friedrich Menhorn (TUM), et al. | menhorn@in. tum.de | MLMC estimators for derivative-free optimization under uncertainty

5


mailto:menhorn@in.tum.de

Scientific Computing
Department of Informatics

Technical University of Munich

MLMC estimator: Mean

Mean in OUU:
mxlnf@E A min L} [Q(x,0)]

*Giles, M.B., "Multilevel Monte Carlo methods,” Acta Numerica, Vol.24, 2015, p.259-328
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TM. Pisaroni, S. Krumscheid, F. Nobile, Quantifying uncertain system outputs via the multilevel Monte Carlo method - Part I: Central moment

estimation, 2020, JCP
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Algorithmic details:
« lterative sample allocation

 Underrelaxation

« Choice of sample allocation strategy: Analytic approximation vs. numerical optimization

« Choice of covariance approximation: Pearson vs. Bootstrap vs. Correlation Lift
Friedrich Menhorn (TUM), et al. | menhorn@in. tum.de | MLMC estimators for derivative-free optimization under uncertainty


mailto:menhorn@in.tum.de

Scientific Computing
Department of Informatics

Technical University of Munich

Rosenbrock

- o ,2\2 Y
minr(x,y) =min100(y —x7)"+ (1 —x)

2.5 777777777 %

%  Start
® Det

2.01
1.5

> 1.0

0.5 1

0.0 4

-0.5 T T T T T
-15 -1.0 -0.5 0.0 0.5 1.0

-

5

Friedrich Menhorn (TUM), et al. | menhorn@in. tum.de | MLMC estimators for derivative-free optimization under uncertainty 10


mailto:menhorn@in.tum.de

Scientific Computing
Department of Informatics

Technical University of Munich

Rosenbrock

DinBlr(x,y) + b(2)] DinBlr(x,y) + b(2)] + 301r(x.) + b(Z)]

bo(Zy,2,23) = sin(Zy) + asin(Z)? 4 bZy sin(Zy) — a/2,{Z; ~ % (— 7, ) }3_;
11(Z4, 2>, 23) = sin(Z;) 4 0.85asin(Z,)? + bZy sin(Z;) — 0.85a/2,
Io(Z4,2>,23) = sin(Z;) 4+ 0.6asin(2)? +9bZzsin(Z;) — 0.6a/2.

0.0
X

Friedrich Menhorn (TUM), et al. | menhorn@in. tum.de | MLMC estimators for derivative-free optimization under uncertainty

10


mailto:menhorn@in.tum.de

Scientific Computing
Department of Informatics

Technical University of Munich

Rosenbrock results: Mean
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Rosenbrock results: Mean

Noise development Mé]% over the optimization
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Rosenbrock results: Scalarization

Rosenbrock F + 30 (after 200 iter)
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Rosenbrock results: Scalarization

Rosenbrock avg Cost for £ + 30 (after 200 iter)

1000 1
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400 A

Avg Cost per evaluation

200 A

MLMC Mean AA 20 iter

MLMC Scalarization AA 20 iter
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Rosenbrock results: Scalarization

Noise development Mé]% over the optimization
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= M|LMC Mean AA 20 iter
0.6 === MLMC Scalarization AA 20 iter
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Wind plant application

Setup:

- five NREL 5 MW turbines (RD 126 m, HH 90 m)
« RANS model with actuator disk turbine representation using WindSE (https:/github.com/NREL/WindSE)
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Wind plant application

Setup:

- five NREL 5 MW turbines (RD 126 m, HH 90 m)
« RANS model with actuator disk turbine representation using WindSE (https:/github.com/NREL/WindSE)

Parameters: (Turbine i =1, 2, 3)

« Yaw angle design:

{1}y € [-45°,45°]
» Inflow wind speed: 6, ~ 4/ (7.5%,17)
« Inflow wind direction: 6,, ~ .4#"(45°,5°)
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Wind plant application

Setup:

- five NREL 5 MW turbines (RD 126 m, HH 90 m)
« RANS model with actuator disk turbine representation using WindSE (https:/github.com/NREL/WindSE)

Parameters: (Turbine i =1, 2, 3)

« Yaw angle design:

{y}2, € [-45°,45°]

OUU Scalarization:

max Hs = max E[Piotal(+)] — 30| Potal(-)]
» Inflow wind speed: 6, ~ 4/ (7.5%,17) b 1=y

« Inflow wind direction: 6,, ~ .4#"(45°,5°)

Friedrich Menhorn (TUM), et al. | menhorn@in. tum.de | MLMC estimators for derivative-free optimization under uncertainty 13


mailto:menhorn@in.tum.de

Scientific Computing

Department of Informatics m

Technical University of Munich

Wind plant application

Setup:

- five NREL 5 MW turbines (RD 126 m, HH 90 m)
« RANS model with actuator disk turbine representation using WindSE (https://github.com/NREL/WindSE)

Parameters: (Turbinei=1, 2, 3)

« Yaw angle design:

{vi}>_; € [-45°,45°]

OUU Scalarization:

max #g := max E[Piotal(-)] —36[Protal(-)]
- Inflow wind speed: 6, ~ .4/ (7.57,17) s {n?

« Inflow wind direction: 6,, ~ .47 (45°,5°)

velocity Magnitude
0.0e+00 2 TITNASA5 SOW V. 9.0e+0Q

velocity Magnitude

velocity Magnitude
0.0e+00 g o5 8.8e+0Q

o

0.0e+00 2 4 5 8.8e+0Q
|

(a) COARSE (DoF 27760) (b) MEDIUM (DoF 130208) (c) FINE (DoF 376808)
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Wind plant application

Setup:

« five NREL 5 MW turbines (RD 126 m, HH 90 m)

« RANS model with actuator disk turbine representation using WindSE (https:/github.com/NREL/WindSE)
Parameters: (Turbinei=1, 2, 3)

« Yaw angle design:

OUU Scalarization:
{n}7_, € [-45°,45°]

max Hs = max E[Piotal(-)] — 30 [Protal(*)]

- {n {n}
» Inflow wind speed: 6, ~ 4 (7.5%,17) = =
« Inflow wind direction: 6,, ~ .#"(45°,5°)
TN N R AN Tt RN AN N
NN g 128 SN, N ) ﬂ4555§5§§§§§§'§n§§§\\
ST AR SR AL S Y iiaasnmnnnnna
/ //// > / | % \ \\\\\\ y /' ” 7 \ \ ‘\\ 4 é}"éﬂ v?}gg
/,"(\ [ AND \\ \\\ 2 4 N ;\\
f /// ) XK \<‘\ ’,’ s X X \\
K e b nesy
N\ ENEne T ‘ i AN PNV D=
\\\\< N IN PRI + ] W ///” \\ 2N N
& i x
N £ ~ AR 7 /4 g
\ N VIN/ 7 N ’ \ “‘ N““’MN?;’ /)/
(a) COARSE (DoF 27760) (b) MEDIUM (DoF 130208) (c) FINE (DoF 376808)
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Wake steering results

ObjeCtive: Rpback = E[fpower] - 30[fpower]
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Wake steering results

Design: yaw angle {y;}?_
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y1 MC N, =150
Y2 MC NL =150
ys MC N, =150
Ya MC NL =150

ys MC N, =150 "

y1 MLMC NS
v2 MLMC N
y3 MLMC NS
va MLMC NS
vs MLMC NS
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Conclusion

= New MLMC estimators for Standard Deviation and Scalarization coupled with SNOWPAC in
Dakota.

= Start of OUU results for wind application.

Future work and open questions: Links:
« Short term: Figure out issues « SNOWPAC: github.com/snowpac/snowpac
« Long term: Introduce more uncertainty « Dakota: dakota.sandia.gov

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia
LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under
contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.
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