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Tools to identify source-impact relationships are needed
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The ability to distinguish the impacts of intervention, anthropogenic climate change, 
and natural variability will become increasingly important as the effects of climate 
change compound.

Modified from:  http://www.thesourgrapevine.com/2019/11/the-ball-of-string-theory-for-learning.html

Earth System Models (ESMs) are the primary testbed to predict climate 
impacts, but complex coupling of processes in ESMs can obscure the 
relationships between sources and impacts.

Observations have been historically underutilized to improve our 
knowledge of the earth system.

Attributing a predominant source to an impact is an ill-
conditioned problem due to many possible sources leading to 
similar climate impacts.

These limitations create a significant barrier to developing quantitative relationships 
between sources and impacts. 



Establishing Connective Relationships in Earth’s Climate:
Current Approaches
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o High internal variability in the Earth system; 

o Limited ESM ensembles;

o Historically limited observational data;

o Multiple sources contributing to an impact.

       Confounding characteristics of the climate attribution problem:

       Techniques currently applied to climate attribution:

Connective relationships are often unbounded from 
etiological relationships allowing physically meaningless 

source-impact correlations. 
(Caldwell et al., 2014)

o Fingerprinting (e.g. Hasselmann, 1997; Hegerl & North, 1997; Marvel et al., 2020)

o Causal Inference (e.g. Runge et al., 2019; Nowack et al., 2020) 

o Emergent constraints (e.g. Hall et al., 2019; Williamson et al., 2021)

Moving beyond a correlative approach – establishing connective relationships. 

“Pecking Order”, Edgar Hunt



What are the downstream 
impacts from large, spatio-

temporally localized sources 
within the climate?

How do changes in the 
global climate system affect 
the relative frequency and 

severity of extreme events ?

Sector-specific emissionsLong-term, slowly 
accumulating GHG emissions

What is the 
question?

What is the
 source?

Examples Volcanic eruptions,     
wildfires

Likelihood of 
Hurricane Katrina

Cement industry, 
transportation

How do rising 
concentrations of GHGs in 

the atmosphere affect 
climate state variables?  

What are the relative 
contributions of different 

sectors, activities, and entities 
to concentrations of GHGs in 

the atmosphere?

Changes to global 
climate system 

Geographically and 
temporally localized  source 

forcings in the climate

WG1 and WG2 IPCC 
reports

CLDERA

Attribution in Climate

The goal of CLDERA is to develop new tools to enable downstream impact attribution from geographically 
and temporally localized source forcings in the climate. 

Is the attribution 
direct / 

quantitative? 

WG1- yes (temp/precip/…)
WG2 – normally no, 

notional linkage
yes no, notional connection yes, linked through multiple 

process-nodes
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attribution

observed 
pathways

simulate
d 

pathways
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Determine how a geographically 
and temporally localized source 
drives the climate system to 
respond with particular impacts to 
enable downstream impact 
attribution

Tracing pathways between source and 
impacts will increase certainty of 
attribution and deepen understanding of 
dependent causal-like relationships 

Pathways represent the spatio-
temporally evolving chain of physical 
processes that connects a source to 
mpacts.

Need Hypothesis

Outcome

CLDERA  
a novel foundational approach

o Build upon key strengths of Sandia 
(modeling & simulation, detection & 
attribution, risk analysis) 

o Develop novel methods and tools in                        
3 cross-validating thrusts

o 1991 explosion of Mt. Pinatubo as 
exemplar

C L D E R ATechnical Approach 
Advance climate attribution science by 
identifying impacts from localized 
sources.
oFormalize pathways and establish 

robustness
oRanking of sources to impact
o  Attribution of source characteristics 



The source is an analog for a climate 
intervention technique 

 1 Tg SO2/yr may produce on the order of 
0.1°C cooling (Kravitz et al., 2017)

The source forcing is external to the 
feedbacks within the Earth’s climate

The impacts are large enough to rise above 
internal variability in the simulations

It provides ample observational data and, 
because the impacts and pathways are relatively 
well characterized it offers validation of our 
analysis techniques within the approach

A strong working example:

Mt. Pinatubo
Stratospheric Aerosol Injection
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SOURCE

Atmospheric Circulation

IMPACTS

Notional Representation of Subset of Processes 



Temperature Impacts from Mt. Pinatubo
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• Absorption of terrestrial LW and 
incident solar near-IR  radiation by 
sulfate aerosols

• Reduction in solar radiation at surface due 
to scattering by sulfate aerosols
•Water vapor feedback [Soden et al., 2002]

• Tropical stratospheric warming 
intensifies polar vortex and induces a 
strong positive phase in the NAO

 

• Observed 0.4 C global mean cooling 
[McCormick et al., 1995]

•Warming in NH first winter after 
tropical eruption [Robock & Mao, 1992]

• Observed ~3 C warming at 50-hPa, 
[Angell 1997]

• Confounding factors: ozone changes • Confounding factors:  ENSO, LW radiation, 
aerosol indirect effects, climate dynamics 

• Disputed:  natural variability or forced 
by eruption 

Emission/Aerosol formation
Aerosol Optical depth 

Map shows 1.5 months post‐eruption

1991 SW in red
continuing into 
1992

Pinatubo Eruption 

Reduced temperatures 
lasting several years

Change in Radiation Flux
Net shortwave & longwave

Temperature Change
2m and 50hPa



Energy Exascale Earth System Model (E3SM)
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• US DOE funded Earth system model.

• Collaboration among 8 National Labs and 12 academic 
institutions.

• Designed to run on DOE’s advanced computing platforms 
and address energy-relevant science questions. 

• Capabilities to model Mt. Pinatubo eruption and impacts.
• Resolves stratosphere: 72 vertical levels with 0.1hPa (64 

km) model top.
• Includes key process models for clouds, ozone, and 

aerosols [Golaz, et al. 2019].

:

www.e3sm.org

http://www.e3sm.org/


Simulating Mt. Pinatubo

• Implemented prognostic volcanic aerosols in E3SMv2
• Change aerosol coarse and accumulation mode 

properties to match stratospheric size distributions
• Evaluate OH consumption on sulfate production 

• Evaluating E3SM simulation capabilities
• Assess Quasi-Biennial Oscillation (QBO) and realism 

of E3SM’s stratospheric circulation
• Evaluate E3SM’s Brewer Dobson circulation via age-

of-air tracers and water vapor tape recorder 

:
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Mt. Pinatubo
X. Liu- Impacts of Model Resolution on Simulated Aerosol and 
Aerosol Effects on Climate Over East Asia With NCAR CESM, Wed. 6-8 
pm. 

Team: B. Wagman, H. Brown (SNL), X. Liu, A. Hu (TAMU), C. Jablonowski, J. Hollowed (U Michigan)



Atmospheric Circulation

Statistical Approaches: use and extend sensitivity 

analyses and Random Forest Regression to identify and 

rank physical pathways while establishing susceptibility to 

initial conditions and E3SM representations

Computational Monitoring: instrument E3SM with 

tracers and profiling capabilities to enable pathway 

detection; additionally deploy novel simulation 

strategies to elucidate Mt. Pinatubo impacts on climate

Anomaly Detection: define pathways through extensions 

to existing anomaly detection algorithms in order to 

spatio-temporally trace anomaly progression

IMPACTSSOURCE

SIMULATED Pathways
finding impacts from a source
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Research Composition:

IDENTIFY Driving Pathways
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Statistical Methods
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• Random Forest Regression
• Use feature importances from Random Forests (RFs) to 

identify weighted pathways from one variable (or feature) 
to another

Team: M. Peterson, I. Tezaur, K. Peterson 

Global sensitivity analysis (GSA) results for surface 
temperature QOI from [Tezaur et al., 2021]

Thick edge = 
important 
feature
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:

I. Tezaur, Global Sensitivity Analysis Using the Ultra-low Resolution 
Energy Exascale Earth System Model, Tues. 2:30-4:30 pm.



Computational Monitoring
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:

Team A. Steyer, J. Watkins, L. Bertagna, G. Harper, I. Tezaur (SNL) 

Base DAG
Relevant physics 

dependencies 
CLDERA-tools

In situ Operation

Pathway DAG
Anomalous 

dependency chain

Subroutine DAG
E3SM function 
dependencies

A. Steyer- Detecting Physical Pathways With 
Software Profiling, Tues. 2:30-4:30 pm.

:
• Profiling – in situ pathways

• Instrument E3SM and develop Directed Acyclic 
Graphs (DAGs) of process interactions executed 
within code

• Tracers
• Passive:  Evaluate climatological dynamics (like “Age of 

Air”) and changes to those dynamics.
• Active:  enable tracking of relative contributions along 

nodes in pathway.

Team B. Hillman, A. Steyer, I. Tezaur (SNL), C. Jablonowsi, J. Hollowed (U. Michigan) 



Anomaly Detection
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:

Team: W. Davis, M. Carlson, I. Tezaur (SNL) 

Signature Clustering  Approach: 
• use compressed ISML signatures 

for clustering
• use clusters to inform pathway 

analyses  

• Extend existing anomaly (event) detection 
algorithms [Davis et al., 2021] to enable spatio-
temporal anomaly progression, defining 
pathways
• Signature-measure-decision-based 

approach
• Communication-minimizing
• Unsupervised (extensions to supervised 

possible) 
• Leverages “In-Situ Machine Learning for 

Intelligent Data Capture on Exascale 
Platforms” (ISML) project (PI: W. Davis)

W. Davis - In Situ Machine Learning for Intelligent Data 
Capture in HPC Simulations, Wed. 6:00-8:00 pm. 



OBSERVED Pathways
finding impacts from a source

Data Fusion: strategically source and fuse relevant data of 

varying resolutions and fidelities to create a “near-global” 

picture of the relevant processes

Change Point: identify the underlying fundamental shifts 

in climate processes 

Space-Time Statistical Methods: adapt Bayesian 

hierarchical approaches to represent process 

dependencies and their dynamic spatio-temporal 

evolution over the first 3-4months post eruption 

Hybrid Statistical & Deep Learning Methods: develop 

hierarchical statistical approaches embedded with DL 

techniques to trace secondary and tertiary temporally-

lagged effects
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Research Composition:
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Change Point Methods
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The diffeomorphism gives a 
measure of the bending/ 
stretching to align spatial 
data at time 0 and N.

Difference between time 0 to time N

Team: B. Li, S. Jun (U Illinois), D. Tucker, L. Shand (SNL) 

• Space-time methods stablish climate 
shifts and relationship to distance from 
source. 

Before alignment After alignment

• Elastic Functional Warping Methods can 
be leveraged to identify change points in 
the underlying spatio-temporal process by 
isolating shifts that are not due to 
expected weather patterns.

Posterior distribution of estimated spatially-varying 
changepoint at different latitudes (using simulated data)



Spatio-Temporal Statistics

Team: K. Goode, B. Hillman, G. Huerta, J. Li, L. Shand (SNL) 

Time-varying variance parameter estimates with red line representing 
time of event (above) and estimated spatial dynamic components (below) 

of the dynamic model applied to stratospheric temps.

June 1991 – March 1992

Stratosphere

Surface

June 1991 July 1991

ᵰ� 2

ᵰ� 2

• Dynamic spatio-temporal models are 
intuitive and interpretable ways to 
represent complex, dependent, physical 
processes that change across space and 
time simultaneously.

• Implementation of Finley et al. (2012) to 
reanalysis temperatures at multiple 
pressure levels reveal evidence of Mt 
Pinatubo impact. 



Hybrid Stat-DL Methods
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• Echo-State Networks (ESNs)
• Use reservoir computing to efficiently 

estimate recurrent neural networks 
(RNN). 

• Represent dependent processes 
occurring over different time scales by 
increasing interpretability through 
introducing spatially dependent 
parameters.

• McDermott and Wikle [2018]

• Permutation Feature Importance
• Novel method to increase explainability 

of existing ESNs.
• Leverages Goode et al. [2020].

PFI – identifying how ESN’s make use of historical temperatures 
by investigating the influence of lagged temperature on forecast 

temperatures 

Quadratic ESN Residuals – Need for increased spatial fidelity 
to correctly account for high latitude temperatures

Team: K. Goode, B. Hillman, G. Huerta, J. Li, L. Shand (SNL) 



ATTRIBUTION
finding predominant source driving impact

Enhanced Fingerprinting: use pathway information to 

expand multi-variate analyses, sharpening the signal-to

-noise ratios and enabling significant correlations 

between source-impact

Inverse Optimization:  develop deep operator neural 

networks (DONNs) to model parts of E3SM to enable 

PDE-constrained optimization without intrusion into 

the E3SM code directly; pathways will act as penalty 

terms or constraints 

Causal Modeling:  identify causal relationships and 

dominant pathways by developing causal networks 

through iterative independence tests and the resulting 

directed acyclic graphs 

Research Composition

What precipitates the impact?
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Enhanced Fingerprinting
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Traditional Fingerprint – Detection of Pinatubo
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• A fingerprint is a spatial and/or temporal 
pattern that highlights an impact

• Commonly, a fingerprint is the first principal 
component or empirical orthogonal function 
(EOF) from a singular value decomposition of 
a data matrix.

• Detection involves identifying if the signal 
projected back onto the EOF goes out of 2ᵰ�  
limits. 

• Attribution involves examining the 
magnitude of the fingerprint in a regression 
formulation and checking its significance.

Team: B. Wagman, K. Chowdhary, L. Swiler (SNL); K. Marvel (Columbia)

Leverages Wagman et al. 2021

K. Chowdhary, E3SM Atmosphere Surrogate Construction Using 
Data-driven Reduced Order Modeling, Wed. 6:00-8:00



Inverse Optimization
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• The identification of magnitude, height, and 
location of the source is a large-scale, PDE 
constrained inverse problem. 

• Find source parameters  which minimize 
the difference between aerosol 
concentrations (csim) and observations (cobs) 
subject to the atmospheric physics 
constraints

• Core idea:  develop deep operator neural 
networks (DONNs) to model parts of E3SM to 
enable PDE-constrained optimization without 
intrusion into the E3SM code directly.  

• Add pathway information as penalty terms in the 
objective and/or additional constraints.

Advection-diffusion reaction with 
Gaussian plume source

Team: J. Hart, M. Gulian, I. Manickam, L. Swiler (SNL)

M. Gulian Facilitating Atmospheric Source Inversion via 
Deep Operator Network Surrogates, Wed. 10:30-12:30



Causal Modeling
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• Establish relationships between a set of 
variables to confirm a hypothesized casual 
relationship

• Causal network learning
• Fits a graphical model of covariates by 

iterative conditional independence 
tests.

• PCMCI algorithm:  Peter Clark 
Momentary Conditional Independence. 
[Runge, 2019] 

• Allows for and detects 
contemporaneous dependencies.

• Tropical SO2 causes Tropical H2SO4 (over a 1 and 3 month lag)
• Tropical SO2 causes a change in optical aerosol depth (AEROD)
• Tropical AEROD shows a negative contemporaneous 

dependence with global surface radiation flux.

Team: J. Nichol, M. Smith, L. Swiler (SNL)

J. Nichol  Global Multivariate Causal Discovery for the Analysis of 
Emergent Properties in Earth System Models, Wed. 10:30-12:30



Summing CLDERA
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Simulated Pathways

Observed Pathways
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