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Co-Optima challenges 

1. Gasoline/ethanol blends do not behave like an ideal 
mixture (alcohol is a polar substance and iso-octane is 
non-polar):
 Non-linear effects (azeotrope) 
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2. Do individual species need to be individually tracked?
 Infinitely fast (infinite-conductivity model) vs. finite thermal and mass diffusion

       

                                    (for spherical symmetry:                            )

 There are two limit cases:

        Pe << 1: distillation 

                Pe >> 1: co-evaporation

Tb of iso-octane/ethanol 
blend at 6 bar 



Mixing rules based on the Helmholtz energy of the 
components with departure function for E30
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Computational approach: the interface-capturing code CLSVOF

• Sharp-interface discretization of multi-phase Navier-Stokes equations:

 Moment of Fluid interface representation [1]
Adaptive Mesh Refinement (AMReX)
 Large Eddy Simulation (WALE) 
 Fully compressible formulation [2]
 Non-conformal moving wall boundaries [3,4] 
 Cavitation [5]
 Evaporation and boiling [6,7]

[1] M. Jemison, et al., J. Sci. Comput. 54(2-3) (2013) 454-491. 
[2] M. Jemison, M. Sussman, M. Arienti, J. Comput. Phys., 279, (2014) 182-217.
[3] M. Arienti and M. Sussman, Int. J. of Multiphase Flow 59: 1-14 (2014).
[4] M. Arienti and M. Sussman, Int. J. of Multiphase Flow 88, 205-221 (2017).
[5] M. Arienti, E. Wenzel, B.A. Sforzo, C.F. Powell, Proceedings of the Combustion Institute (2020). 
[6] E. Wenzel and M. Arienti, ILASS-Americas (2021). 
[7] E. Wenzel and M. Arienti, “A conservative framework for the modeling and simulation of evaporation in 
compressible flow systems” – submitted to JCP.
 

In collaboration with FSU and the LBNL AMReX co-design center
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Droplet in crossflow example: relevance of Stefan flow6

• E30 has lower vapor pressure, generally leading to larger evaporation rate
• High rates of evaporation provide insulating layer of cool gas and thicken boundary layers
• In turn, the phase change rate depends on the boundary layer thickness

Iso-octane E30

Ucross = 10 cm/s

Pg = 3 bar 
Tg = 573 K 
Tl = 362 K

Liquid 
phase 
centroid

Gas phase 
centroid



Computational challenge
• Problem: phase change introduces velocity 

discontinuity at the interface
• Directly applying the divergence operator would 

impose an unphysically large momentum increment

• Solution:
• Introduce cell-centered, phase-specific velocity

• Introduce face-centered, phase specific velocity
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Velocity field diagram



Computational challenge
• Problem: phase change introduces velocity 

discontinuity at the interface
• Directly applying the divergence operator would 

impose an unphysically large momentum increment

• Solution:
• Solve augmented single-fluid pressure equation
• Conservatively extract phase-specific velocities from 

single-fluid velocities

• Transport all conserved quantities with phase-
specific velocities; transport MOF quantities with 
liquid-phase velocity; apply consistency constraints
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Velocity field diagram



Fully open vs. closing pintle and near-injector phase change 

• ECN G1 with up to  450million cells reaching Dxmin = 5.86 mm (2 levels of refinement)
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Fuel 
inlet

Spray G injector

Lift and Wobble for ECN Spray G #28



Comparison snapshots with fully open pintle10

Iso-octane

Images obtained by jointly imaging liquid surface (colored by T) and three iso-surfaces for Yvapor = 0.1, 0.25, 0.50

Observed difference in spray angle and jet structure, with enhanced vaporization for E30 
E30

• regression rate:                          ~ 0.73 cm/s             ~ 0.69 cm/s 



Comparison with data: X-radiography from ANL 11

“cold G” (*): 6・105 Pa, 318 K

Z = 1 mm

(*) ECN workshops and  M. Arienti, E. Wenzel, B.A. Sforzo, C.F. Powell, PCI (2020)  

Relatively good agreement considering the shorter averaging time of the simulation 

Average of the 8 density profiles passing
though the nominal centers of the jets 



Iso-octane E30
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Flow passing through the counterbores at fully open 
conditions
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Toward end of injection for iso-octane13

Increased amount of vapor – no evidence of boiling

Iso-octane 9 mm gap 



Iso-octane E30

Entrainment of hot gas is counterbalanced by cooling effect of 
E30
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Conclusions15



THANK YOU

Questions?



Close-up showing evidence of dribbling at end of injection17

Iso-octane 9 mm gap 

Six-hole injector at ambient conditions 
Hélie, et al., International Journal of 

Engine Research 22.1 (2021): 125-139.

ms ASOI

commercial gasoline with 5% ethanol
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Numerical discretization of evaporating fuel sprays

• Sharp-interface discretization (no Lagrangian droplets or associated models)
• Liquid and gas treated as compressible
• Conserved quantities stored at liquid/gas center of mass in each computational cell
• Diffusion and phase change defined by a novel, operator-split methodology that is 

consistent and conservative
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Windowed view of full-scale spray simulation



Operator-split, mixed-time level integration approach
• Sharp interfaces require implicit time integration
• Capillary dynamics require small time steps
• Phase change systems are tightly-coupled
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Spatial 
discretization

Temporal discretization

Solution:
Implicit intra-cell 

fluxes 
Explicit inter-cell 

fluxes
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Ucross = 500 cm/s

Pg = 3 bar 
Tg = 573 K 
Tl = 362 K

Ucross = 62.5 cm/s


