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Co-Optima approach
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s 1 Co-Optima challenges

1. Gasoline/ethanol blends do not behave like an ideal
mixture (alcohol is a polar substance and iso-octane is
non-polar):

Non-linear effects (azeotrope)

2. Do individual species need to be individually tracked?
Infinitely fast (infinite-conductivity model) vs. finite thermal and mass diffusion

Pe, = D, - liquid interdif fusion rate
f herical : Pe; = My
(for spherical symmetry: Pe; = 47RD,p,

There are two limit cases:

surface regression rate

Pe << 1: distillation

Pe >> 1. co-evaporation
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4 ‘ Mixing rules based on the Helmholtz energy of the
components with departure function for E30
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5 | Computational approach: the interface-capturing code CLSVOF
In collaboration with FSU and the LBNL AMReX co-design center

* Sharp-interface discretization of multi-phase Navier-Stokes equations: ‘

v Moment of Fluid interface representation [1]
v'Adaptive Mesh Refinement (AMReX)

v’ Large Eddy Simulation (WALE)

v" Fully compressible formulation [2]

v Non-conformal moving wall boundaries [3,4]
v’ Cavitation [5]

v’ Evaporation and boiling [6,7]

[1] M. Jemison, et al., J. Sci. Comput. 54(2-3) (2013) 454-491.
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[5] M. Arienti, E. Wenzel, B.A. Sforzo, C.F. Powell, Proceedings of the Combustion Institute (2020).
[6] E. Wenzel and M. Arienti, ILASS-Americas (2021).

[7] E. Wenzel and M. Arienti, “A conservative framework for the modeling and simulation of evaporation in I
compressible flow systems” — submitted to JCP. I



s 1 Droplet in crossflow example: relevance of Stefan flow

- E30 has lower vapor pressure, generally leading to larger evaporation rate

+ High rates of evaporation provide insulating layer of cool gas and thicken boundary layers

* In turn, the phase change rate depends on the boundary layer thickness
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7 I Computational challenge

* Problem: phase change introduces velocity Velocity field diagram u
discontinuity at the interface —
» Directly applying the divergence operator would U, ;
impose an unphysically large momentum increment .
« Solution:
* Introduce cell-centered, phase-specific velocity
Upiv1/2
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s | Computational challenge

* Problem: phase change introduces velocity
discontinuity at the interface

Directly applying the divergence operator would
impose an unphysically large momentum increment

Solution:

Solve augmented single-fluid pressure equation

Conservatively extract phase-specific velocities from
single-fluid velocities
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: ‘ Fully open vs. closing pintle and near-injector phase change

« ECN G1 with up to 450million cells reaching Ax_., = 5.86 um (2 levels of refinement)
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10 ‘ Comparison snapshots with fully open pintle

Observed difference in spray angle and jet structure, with enhanced vaporization for E30
|so-octane E30
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1 I Comparison with data: X-radiography from ANL

Relatively good agreement considering the shorter averaging time of the simulation

Z=1 ‘
mm Average of the 8 density profiles passing

“cold G” (*): 6 * 105 Pa, 318 K A 50 00 though the nominal centers of the jets

45

40 -o— X-radiography
+41.67

'"3:: —— CLSVOF
3
 33.33 > 30
ma 2 25
& S 20
25.00 S °
3 © 15
g
16.67 g 10 )
" i
8.33 0 oo0oF |
— — -0.3

T R T T Y T T T T N T T T T ) T \ [ 0_00

(*) ECN workshops and M. Arienti, E. Wenzel, B.A. Sforzo, C.F. Powell, PCI (2020) I



12 ‘ Flow passing through the counterbores at fully open

conditions
|so-octane E30
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13 ‘ Toward end of injection for iso-octane

Increased amount of vapor — no evidence of boiling

|so-octane 9 um gap
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14

Entrainment of hot gas is counterbalanced by cooling effect of
E30

Iso-octane E30
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15 | Conclusions

o A sharp-interface method for the multiphase Navier-Stokes equations is applied to
calculate the vapor concentration in the counterbores of a gasoline injector

o Pe~3 = co-evaporation model - but it is only an average value for specific injection
conditions

o Differences between neat iso-octane and E30 are particularly clear toward the end of
injection
o The simulation shows that gas stops being entrained in the counterbores during the
closing transient;
o It also shows that the temperature increase at the liquid surface is mitigated by the
cooling effect of evaporation only in the case of E30

o Work is in progress to analyze the CFD results and provide further insight into the
primary atomization processes |
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Close-up showing evidence of dribbling at end of injection

Iso-octane 9 pm gap commercial gasoline with 5% ethanol
0.1 msASOI

Six-hole injector at ambient conditions
Hélie, et al., International Journal of
Engine Research 22.1 (2021): 125-139.







1o I Numerical discretization of evaporating fuel sprays

« Sharp-interface discretization (no Lagrangian droplets or associated models)
» Liquid and gas treated as compressible
« Conserved quantities stored at liquid/gas center of mass in each computational cell

- Diffusion and phase change defined by a novel, operator-split methodology that is
consistent and conservative

Interface reconstruction
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Windowed view of full-scale spray simulation Navier-Stokes
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20 | Operator-split, mixed-time level integration

* Sharp interfaces require implicit time integration

« Capillary dynamics require small time steps

* Phase change systems are tightly-coupled

approach

Temporal discretization

Solution:
Implicit intra-cell
fluxes
Explicit inter-cell
fluxes
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21 ‘ 200 um diameter iso-octane droplets evaporating
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