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Combustion

https://news.mit.edu/sites/default/files/styles/news_article__image_gallery/public/images/202001/Sili_Flame.png?itok=I__XQmDR

» Major motivation for combustion research is to develop advanced fuels and
technologies that improve engine efficiencies and lower pollutant emissions.

» Low-temperature (LT) combustion engines are one recent promising innovation.

» Aim to convert fuel at sufficiently low temperatures to avoid soot and nitrogen oxide
formation, while increasing thermal efficiency.

» Accurate models of LT chemistry can help predict fuel properties and advance
applications.
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" Low-Temperature (Below ~1000 K) Combustion

Hydrocarbon fuel: RH
Initiation: *OH + RH «—= R* + H,0

Ro

1St 02 N O I
Addition 2
ROO* — H02‘+alkene

|

'QOOH — OH + carbonyl

2" 0 '
2 L 02 I or cyclic ether
Addition

*'O0OQOO0OH—HO," +alkene

I \ hydroperoxide

HOO*POOH — *QOH + ketohydro-
peroxide (KHP)
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Low-Temperature (Below ~1000 K) Combustion

Hydrocarbon fuel: RH
Recycling: *OH + RH «— R* + H,0

Chain Inhibition
R° Chain Propagation
10, +0, I Chain Branching

Addition
ROO* — H02‘+alkene

|

'QOOH — *OH + carbonyl

2" 0, N or cyclic ether
Addition 2 I

‘O0QO0H—HO,* +alkene . ‘OH

I \ hydroperoxide loss

HOO*'POOH — *OH + ketohydro- — ‘OH

peroxide (KHP) loss
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Cyclopentane (CPT) Oxidation

Cyclopentane (CPT) Hydrocarbon fuel: RH
4 Recycling: *OH + RH <= R* + H,0
O Chain Inhibition
Simple model system: 10 R* Cha!n Propag:atlon
» Exhibits typical alkane oxidation Addiiion +0, I Chain Branching
pathways. ROO°: — HOZ' + alkene
» Symmetrical structure results in I /'
single initial isomer. ‘QO0OH — *OH +carbonyl
» Reactivity dominated by chain 2 0, +0 I or cyclic ether
inhibition. Addition = ~*
» Intermediates and products have ‘0O0QO0H _>H02. ;;ﬁ;zmxide—’ .Ig!'l
been quantified. I \

Sheps, Dewyer, Demireva, Zador JPCA 2021, 125, 4467. HOO*POOH — *OH + ketohydro- — ‘OH
peroxide (KHP) loss
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Multiplexed Photoionization Mass Spectrometry (MPIMS)

Sheps, Antonov, Au JPCA, 2019, 123, 10804.
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Pressure: 7500 Torr, T: 450-650 K ™ ===——____

CPT (cm3):  1x10'4
O, (cm™): 3x101°
Cl, (cm™3): 8.9 x1014
He (cm™3): (1.3 —0.8)x10%°
Sheps, Dewyer, Demireva, Zador JPCA 2021, 125, 4467.
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2 Cl+, initiating H abstract|on from CPT.

O —> HC| + HCO

Sheps, Dewyer, Demireva, Zador JPCA 2021, 125, 4467.
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Mlt'iplexd Photoionization Mass Spectrometry (MPIMS)
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Sheps, Dewyer, Demireva, Zador JPCA 2021, 125, 4467.
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Multiplexed Photoionization Mass Spectrometry (MPIMS)

» lonization of species mirror
with tunable vacuum
ultraviolet (VUV) light
from Berkeley Advanced field-free
Light Source.
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Time and Energy-Resolved Studies

351 nm Photolysis Laser: 5 Hz Flow speed of gas
200 ms mixture chosen so it mirror
can be completely

replaced between

photolysis pulses.

AL

field-free
-MCP
acceleration
lonization Vuv
0.025 ms
reactor

TOF Repetition Rate: 40 kHz

Osborn, Taatjes, and coworkers Rev. Sci. Instrum., 2008, 79, 104103.
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Time and Energy-Resolved Studies

mirror

AN

field-free

MCP

acceleration
lonization Vuv

m/z

Time of Reaction
Osborn, Taatjes, and coworkers Rev. Sci. Instrum., 2008, 79, 104103.
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Time and Energy-Resolved Studies

mirror

AL

field-free

MCP

acceleration
N . .
~ lonization VUV
=
351 nm
% '
d?\f b reactor S
v, 2L
s | |
(/e Time of Reaction
Osborn, Taatjes, and coworkers Rev. Sci. Instrum., 2008, 79, 104103.
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Identification and Quantification Species

» Species identification from accurate mass and from photoionization
thresholds by comparison with references and calculations.

» Species quantification:

» Reference photoionization cross sections when available.

» Quantification of remaining species from carbon balancing against fuel
consumption from distinct time-behavior.

Demireva, Au, Sheps PCCP 2020, 22, 24649.
Sheps, Dewyer, Demireva, Zador JPCA 2021, 125, 4467 .
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Potential Energy Surfaces (PESs) of CPT Sub-Mechanism

5 Separate PESs:

4 st 0,: CCSD(T)-F12a/cc-pVTZ-F12//M06-2X/6-311++G**
4 Re ROOQe

o Amanda Dewyer
HC. + Oz )\ ’O . ,
:) © and Judit Zador
Sheps, Dewyer, Demireva,
Zador JPCA 2021, 125, 4467 .
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Potential Energy Surfaces (PESs) of CPT Sub-Mechanism

5 Separate PESs:

15t O,: CCSD(T)-F12a/cc-pVTZ-F12//M06-2X/6-311++G**
Re ROOQe

o Amanda Dewyer
HC. + Oz ]\ ,O . ’
:) 0 and Judit Zador
Sheps, Dewyer, Demireva,

2nd 0,: CCSD(T)-F12a/cc-pVDZ-F12//M06-2X/6-311++G**  Zador JPCA 2021, 125, 4467.
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Dominant Pathways in Sub-Mechanism
15t 0, Addition 274 0, Addition

ROOe y-*QOOH y-*OOQOOH (a or s) y-HOO*POOH (a ors)
CH

Re
L/ : +0, o HO +0,  Ho HO
r' <«—p» |HC \ \ . \ . \
ST . «OH
Initiation* and Hoo./i OO > Ay °0H4’i

Recycling cy-CH, CP-3-ene-OOH CP-2-ene-OOH  y-KHP  3,4-O-CP-OOH (a ors)

*MPIMS Experiments: O __Oor O_Q :Q @\

Cl* + RH <> R* + HC|

Sheps, Dewyer, Demireva, Zador JPCA 2021, 125, 4467 .
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Dominant Pathways in Sub-Mechanism

15t 0, Addition 274 0, Addition

PT ROOQe y-*QOOH y-*O0OQOOH (a ors) y-HOO®POOH (a ors)

= 4 R.

L/ : +0, o HO +0,  Ho HO cH

r/ HC \ \ ¢ \ * \

y +-OH «—> — 5 — CH — 0 O/O «—> O o/OH
L . «OH

Initiation* and Hoo./i OO > Ay «OH /l

Recycling cy-CH, CP-3-ene-OOH CP-2-ene-OOH  y-KHP  3,4-O-CP-OOH (a ors)

*MPIMS Experiments: O __Oor O_Q :Q @\

Cl* + RH <> R* + HC|
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Sheps, Dewyer, Demireva, Zador JPCA 2021, 125, 4467 .
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Dominant Pathways in Sub-Mechanism

15t 0, Addition 274 0, Addition

PT ROOQe y-*QOOH y-*O0OQOOH (a ors) y-HOO®POOH (a ors)

Z 4 R.

L/ : +0, o HO +0,  Ho HO cH

r/ <+« |HC N \ * \ g \
ey . «OH

Initiation* and Hoo./i OO > Ay °0H4’i

Recycling cy-CH, CP-3-ene-OOH CP-2-ene-OOH  y-KHP  3,4-O-CP-OOH (a ors)

*MPIMS Experiments: O __Oor O_Q :Q @\

Cl* + RH <> R* + HC|
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Initiation* and

Dominant Pathways in Sub-Mechanism

15t 0, Addition 274 0, Addition

ROOQe y-*QOOH y-*O0OQOOH (a ors) y-HOO®POOH (a ors)

R
{ +0, o HO . *0,  wo . Ho M
HC — 5 — CH — Yo 0 4« 0 OH
@] 0~
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Cl* + RH <= R* + HCI
TR e I P — S m—T AT Bx 102 BE— D s |
1 CPT — 500K 5x10 - —~ &y-Cafs
7 1007 — 525K [~ 4 i _ _
5 991 € § | Primarily
§ 98 S S observe 15t O,
= = S 2
=5 974 © = . .
= £ = addition species.
o 96+ Q 1 -
C
3 954 S 3
© O 2 , - 0- — o
0. 00 0. 02 0. 04 0. 06 0.00 0.02 0.04 0.06 0.00 0.02 0.04 0.06
Time (s) Time (s) Time (s)

Sheps, Dewyer, Demireva, Zador JPCA 2021, 125, 4467.
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15t O, Addition

Dominant Pathways in Sub-Mechanism

274 0, Addition

ROOe y-*QOOH

PT

’

Re
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Dominant Pathways in Sub-Mechanism

15t 0, Addition 274 0, Addition

ROOQe y-*QOOH y-*O0OQOOH (a ors) y-HOO®POOH (a ors)

'PT Re
| : +0, o HO +0;,  Ho HO CH
: . . \
Qo [ DERO O 2 SO~
0 o’
Initiation* and 4/1 HOO-‘./ \_.-OH /l
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Performance of Kinetics Models Against MPIMS Data

> Lit. mech:
Full-scale CPT oxidation
mechanism:

Lokachari, Wagnon,
Kukkadapu, Pitz, Curran
Combust. Flame 2021,
225, 255.

> MESS:

Rate coefficients for
theory-based sub-
mechanism calculated
with Master Equation
System Solver (MESS).

» MESS + Lit.

Mech:

Theory-based sub-
mechanism embedded
into full-scale CPT
model.
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Performance of Kinetics Models Against MPIMS Data

ROO- cy-C:H, ‘OOQOOH Sum 2n O,
lel2 lel2 1.4 lel2 P |ﬂ% I I .
4 P O 12 _o 3.5 HO_ ’Q o At high T, full scale
: |0 O i
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223 parameters in sub-
mechanism to be perturbed,
such as well energies, barrier
heights, frequencies,
imaginary frequencies, and
hindered rotor potentials.

Energy (kcal/mol)

Optimization of Theory-Based Sub-Mechanism

1st O, Addition PES:

CCSD(T)-F12a/cc-pVTZ-F12//M06-2X/6-311++G**

op Four total PESs for 2"? O, addition
CPTO due to anti and syn «OOQOOH

+ *OH .
conformations.
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Global Sensitivity Analysis

Perturb 223 parameters randomly 1st O, Addition PES:
- » Create 1000 perturbed models. E
0-
. TS1 o =
@] . o N
\O’O oS \O’C\CH £ 20-
= .
: S .
Barrier energy £ < 3
Frequency = 5% 1 kcal/mol > n
T | 1 ((b] i
| c 404
0 70 w
" i
310 40 N
G40 30 -60 —
20 20 7

10
o0 "0.95 1.00 1.05 110 %27 -1 0 1
Scaling Factor Deviation
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Global Sensitivity Analysis

. Effect of random perturbation to the 223 parameters on species concentration profiles
from 1000 models at 575 K and 7500 Torr.

ROOs cy-C:H, -0O0QOOH  Sum 2™ O,
. A lel2 lel12 lel12 Pradticts
"E1.00W 3.5 @ 2.5 oo !
© 3.0
~0.98 3 s 29 b\ 5
O ' 1.5 4
5 0.96 2 2.0 i
= 1.5 1.0 % |3
—0.94 1 1.0 M 2
S 0.5
J 0.5 | 1
50.92 0w 0.0 0.0 0
@)
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Time (s)
Experiment; ; Original Model
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Global Sensitivity Analysis

James Oreluk

/> Determine most sensitive parameters from global sensitivity analysis.
'~ » Parameter sensitivity from total Sobol index for species concentrations at 10 ms shown.

» Mainly same 6 of 223 parameters influence modeled species concentrations.

cy- Sum 2" O,
C:H; Products
0.7 0.5
; ;
06 E d 0.4 E
st . 05 = n . =
1 02- l | I l 04 9 2 02' >3 3
“ l L‘ 03 @ 02 0
’“ 2 - 0.1 o
; 01 @ 2
0 0.0 0 0.0
50 850
AN 75 AN 75
9. 100 600 9. 100 600
"'6,}? 125 550" g'\@' "‘5‘1;.? 125 373 ek’@'
S 150 525~ < e X
S~ 175 00 (@ S 00 °
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Global Sensitivity Analysis

1st O, Addition PES:

CCSD(T)-F12a/cc-pVTZ-F12//M06-2X/6-311++G**

f/ E

6 most sensitive parameters:  °

1) Barrier energy for TS1. = -

2) Barrier energy for TS2. £ -202

3) Imaginary frequency, TSl.*C‘J; :

4) Frequencies of TS2. 5 . | Yeaoen :O:O’O
5) Frequencies of ROOs, | }+o; | roOs
6) Frequencies of TS1. : S

-60 —
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Global Sensitivity Analysis

1st O, Addition

6 most sensitive parameters:
1) Barrier energy for TS1.

2) Barrier energy for TS2.

3) Imaginary frequency, TS1.
4) Frequencies of TS2.

5) Frequencies of ROOe.

6) Frequencies of TS1.

Most sensitive parameters impact two rate coefficients.
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nization Workflow: P LT -

g (" Parameters for ) (“Perturb Parameters ) | . I

: - . Master Equation 1

Master Equation within Specified I lculati |

Obtained from »| Uncertainties for |—b| Calcu _atm" to o

Quantum Chemical Most Sensitive ' Obtal_n_Rate |

: I Coefficients. |

| \_ _ Calculations. ) \  Processes. ) , :
4 il i
L . . | — !

Create 500 initial models by perturbing most sensitive ![ Kinetics Modeling to |1

. . Cantera,;| ObtainSimulated !

parameters (16 total) in sub-mechanism: \| concentration |!
1) Calculate rate coefficients with MESS. [\ Profiles. !

2) Model concentration profiles with Cantera. il ====-
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\_ with Experiment. J \___ (Mutation).  /

ization Workflow: g e .
(" Parameters for (Perturb Parameters\ '/~ . W/ N
M . et e g Il Master Equation |1,
aster Equation within Specified | Calculation t ’ _
Obtained from » Uncertainties for |—b 3;“ f' ':“ o 1_:_ New Generation of
Quantum Chemical Most Sensitive ! ta[n_ ate I Parameters.
Calculati P | Coefficients. I
\_ alculations. ) \_ rocesses. Joa\u 4 J | \_ )
liydyeiiyndiyiiynd [puliyutiuliputiuliyntt 1
imi ; : :(K' tics Modeling to ) 1
3) Optimize parameters against MPIMS data with | Kinetics Modeling to 1|
. . Cantera,| ObtainSimulated .
genetic algorithm: || concentration |!!
. . I iles.
1) Fitness value: combined absolute error between [ Profiles |
model and experiment for CPT, ROO*, cy-C.Hg, e - _ N
. 1 ( Fitness Evaluation ) Selection
and OOQOOH at 450-575 K. 1| from Comparison of (Tournament) and
2) Tournament selection: random pairing of 500 | Simulated Parameter
: : : | |Concentration Profiles Perturbation
models and selecting winners from fitness value. :
|

3) New models spawned from 250 winners.
4) Population replaced with 250 winners and 250
new models. ,
5) Process repeated until no change in rate :
coefficients. |
|
|

Optimization with
Genetic Algorithm:

Optimization No

Criteria Met?

Optimized Rate
Coefficients.
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e | Genetic Algorithm Optimization

Hlustration of optimization for top Simultaneous fitting to CPT, ROOe, cy-C:H; and
250 fits of cy-CcHg at 575 K, 7500 Torr: ~ *OOQOOH at 450, 500, 525, 550, 575 K:

V_____.401e12 Cy- T B T T B

£ Generatibnlg 2 0x10 o

U35 Tournament Winners:
~ —@— Avg.
—— Min.

Summed Error

5 1'5 30_ —

©

= 1.0

c

Y 0.5

-

S 0.0 | | |
—-0.01 0.01 0.03 0.05

Time (s)

Experiment; ; Original Model; Best

2.5- B

0 5 10 15 20 25
Generation

Fit Medelry. comrusTiON, AND MATERIALS CENTER 3300 () Sandia National Laboratories
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515
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5 1.0
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U 0.5

UOO

lel2 cy-C5H8

Generation 0

O

~0.01 0.01 0.03 0.05

- 4.0
£
235

3 3.0
=2

O 2.5
°
£20
515
o
510

C

gos
C

UOO

Time (s)
lel2

Generation 24

575K, 7500 Torr

~0.01 0.01 0.03 0.05

Time (s)

Experiment;
Fit Madel xv comBuUsTION, AND MATERIALS CENTER S300)

15t O, Addition

Genetic Algorithm Optimization

Optimization alters k, (isomerization) and k, (HO,
elimination) to yield higher cy-C.H, concentration.

; Original Model; Best

@ Sandia National Laboratories



Optimization reduces k, by a factor of ~¥2 compared with the original model.

250

Top 250 fits, 575 K, 7500 Torr

. Generation 0

10 103
Rate Coefficient, k (s71)

Best fit; original, unperturbed model

101

Rate Coefficient, k (5'1)

Genetic Algorithm Optimization: Isomerization Reaction

- N

o) o

o o
| |

100 -

&)
o
|
—

Isomerization

—@— Average
—— Best Fit
------ Unperturbed Model

10 15 20 25
Generation

CHEMISTRY, COMBUSTION, AND MATERIALS CENTER S300)

@ Sandia National Laboratories



Genetic Algorithm Optimization: HO, Elimination Reaction

* k
O\O/O _2> O + HOOQe

Optimization yields slightly larger k, compared with the original model.

Top 250 fits, 575 K, 7500 Torr — 160 - HO, Elimination :
Il | e —@— Average
i1 Generation 0 Z 140+ —m- Best Fit -
40 I SR B TP Unperturbed Model
w : : 5 120_ -
+ 30 (]
= ! % 100 4 -
8 20 8 80  frrrr e |
10 & 60- -
. 404
0— 101 10 | | AL B R DL R B R LN BN B R B R BN L |
Rate Coefficient, k (s71) 0 5 10 15 20 25
Generation

Best fit; original, unperturbed model
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Temperature Dependent Rate Coefficients

| . k
, O\ 1 HO /O O + HOOe
| T (K)

T (K)
1250 1000 750 500 12501000 750 500
1E7 e - 1E8 .
~~1000000 Isomerization E — 1E7 HO, Ellmlnatlon E
£ 00000 HP Limit: t 21000000 HP Limit: i
—e—Thiswork.  F = 150000 —e— This work. '
510000 i FoE Lit.
S = $ 10000
= 1000 L 2
Q = O 1000
=100 =
O g : = Q@ 100 : :
8 10] Kk, is a factor of L 8 0 k, increasingly
o : 1 ~2lower than lit. 0 deviates and becomes
&U 1 values. rCIU 1 larger from lit. values
0.1 3 0.1
W|th mcreasmg T
0.0010 0.0015 1 0.0020 O 0010 O 0015 1 0.0020 0.0025
1/T (K) 1/T (K)

Lokachari, Wagnon, Kukkadapu, Pitz, Curran Combust. Flame 2021, 225, 255.
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y CPT Low-Temperature Reactivity
15t 0, Addition 24 0, Addition

ROOe y-*QOOH y-¢OOQOOH (a or s) y-HOO¢POOH (a or s)

O/ O/OH
HOOe *OH
Hoou/l k, "~ ¥ -OH/l

cy-C:H, Chain CP-3-ene-OOH CP-2-ene-OOH y-KHP 3,4-0-CP-OOH (a or s)

Inhibition | .@or ) %\\ 0

\

Decomposition of 2"d O Addition Products
Chain Propagation / Chain Branching

Compared to lit. and original models, optimization yields:
» Smaller k,; reduces flux into chain propagating and branching pathways.
» Larger k, at high T; further increases flux into chain inhibiting pathway.

CHEMISTRY, COMBUSTION, AND MATERIALS CENTER 3300 (i) sandia National Laboratories



I ; Evaluation Against High Temperature MPIMS Data

- nd
leld CPT lel2 ROQe lel2 cy C5H8 1 4112 *O0QOOH 4.0lel2 Sum 2 02
1.00 4 > @ 1.2 . 0=0 3.5
3 4 1.0 3.0 —
0.95 0.8 2.5
3 ' 0 2.0
2 0.6 | '
0.90 O 2 0.4 Ok 1.5
1 ' 1.0
1 0.2 05
“c 0.0l 001 003 005 807 001 003 005 -301 001 003 005 -001 001 003 005 =001 0.01 003 005
o lel4d le12 le12 le12 le12
~ . 1.4 4.0
S 1.00 4 1.2
— 4 1.0
@] 3
0.95
é 3 0.8
c 2 0.6
O 0.90 2 Lit. Mechanism
) . . 0.4
s 1 1 Original 02
= Best Fit . i
2 0.85 625 K 00 ol
8 —0.01 0.01 0.03 0.05 —%.01 0.01 0.03 0.05 —%.01 0.01 0.03 0.05 —0.01 0.01 0.03 0.05 —0.01 0.01 0.03 0.05
S lel4d le12 lel12 1.4 lel2 4.0lel2
“ 100 4 5 1.2 35
4 1.0 3.0
0.95 3 0.8 2.5
3 ' 2.0
2 5 0.6 1'5
0.90 0.4 '
1 1.0
1 0.2 05
0.85 650 K 00 oo
—-0.01 0.01 0.03 0.05 —%.01 0.01 0.03 0.05 —%.01 0.01 0.03 0.05 —-0.01 0.01 0.03 0.05 —'%.01 0.01 0.03 0.05

Time (s)

Top 250 optimized
models:
» Reproduce cy-C-H,

concentration
significantly better
compared with lit.
and original models.

Perform better than
lit. and original
models in capturing
2nd 0, addition
products and CPT
consumption.

Lit. Mechanism:
Lokachari, Wagnon,
Kukkadapu, Pitz,
Curran Combust.
Flame 2021, 225, 255.

CHEMISTRY, COMBUSTION, AND MATERIALS CENTER S300

@ Sandia National Laboratories



' / Evaluation Against High Temperature Jet-Stirred Reactor Data

0.0015 O
0.0010 CPT 2
0.0010
0.0005
0.0005 ®’
[ ]
[ ]
[ ]
0.0000 0.0000
0.003 0.003
c co
._8 Lit. Mechanism
Q 0.002 0.002| Original
uL: Best Fit .
D .001 0.001 .
o)
=
0.000 ** | 0.000
cH 0.0004
C -
0.00020 Y~sTs
0.0003
0.00015
0.0002
0.00010 4
0.00005 0.0001
0.0000055" 990 1100  1300°2900955""900 1100
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Temperature (K)

1300

0.0010
0.0008
0.0006
0.0004
0.0002

0.0000°

0.0010
0.0008
0.0006
0.0004

0.0002

0.0000

0.0015

0.0010

0.0005

0.000900

900

1100

1300

Experimental data from: Al Rashidi et
al. Proc. Combust. Inst., 2017, 36, 469.

Fuel/air equivalence ratio = 3.
Pressure: 10 atm

» Inhibition in CPT reactivity at
850 — 1000 K.

» Models exhibit a wide range
of behavior, but generally do
better than lit. mechanism.

Lit. Mechanism:
Lokachari, Wagnon, Kukkadapu, Pitz, Curran
Combust. Flame 2021, 225, 255.
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r y/ Evaluation Against High Temperature Jet-

0.0015

0.0010
0.0010 CPT H0 CZH‘:
0.0008 * e
0.0010
0.0006
0.0005
0.0005 ®’ 0.0004
o’ 0.0002
[ ]
0.0000 0.0000 0.0000°
0.003 0.003
- CO 0.0010 CH,
.g Lit. Mechanism 0.0008
O 0.002 0.002| Original o**
© : 0.0006
L Best Fit . .
% 0.001 0.001 . 0.0004
s 0.0002
0.000 ** | 0.000 0.0000
oy-CH 0.0004 0.0015
0.00020 > '8
0.0003
0.00015 0.0010
0.0002
0.00010
0.0005
0.00005 0.0001
00000956 900 1100 1300200950900 1100 1300 >°%°%00 900 1100 1300

Temperature (K)

Stirred Reactor Data

Experimental data from: Al Rashidi et
al. Proc. Combust. Inst., 2017, 36, 469.

» At fuel rich conditions, not
much HO, produced.

» At high T, HO, reacts with allyl
in OH producing pathways,
which increases CPT reactivity.

. k1

O\O’O
Hoo-/i k,
8

Lit. Mechanism:
Lokachari, Wagnon, Kukkadapu, Pitz, Curran
Combust. Flame 2021, 225, 255.
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Conclusions

» Unique approach using genetic algorithm to optimize
most sensitive quantum chemistry parameters within

15t O, Addition

| ROOe y-*QOOH .. ) )
‘ w0, o Kk, o, expected uncertainties against time-resolved data.
HC:) /O ,C\ » Self-consistent perturbation, allows for model
vooe 4 K, extrapolation beyond experimental conditions.
cy-C.H, » Rate coefficients for two key reactions constrained
O improving model accuracy and agreement with
experiment.

Generation 0

cenerationo  » Effects of parameter
uncertainties on

40

L
o=

520 S
3 k, 320 k, model outcomes
10 10 illustrated.
0" 1ot 10 103 0 o2 10
Rate Coefficient, k (s71) Rate Coefficient, k (s71)
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