

Sandia
National
Laboratories

Exceptional service in the national interest

Low-Rank Tensor Decompositions for Large Sparse Count Data

Danny Dunlavy, Rich Lehoucq, Oscar López

ESCO 2022 - Applied Statistics and Data Science

SAND2022-YYYYP

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Low-Rank Tensor Decompositions in Data Analysis

- What are they?
- Why are they useful?
- How much data is required to use them reliably?

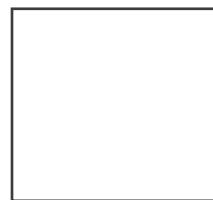
Low-Rank Tensor Decompositions

Tensors: d-way Data Arrays

Vector
 $d = 1$

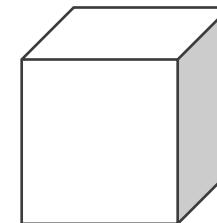
\mathbf{x}

Matrix
 $d = 2$



\mathbf{X}

Tensor
 $d = 3$



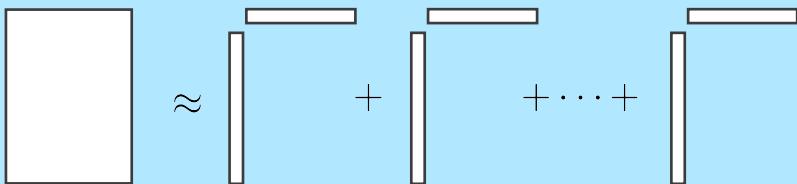
\mathcal{X}

We refer to data arrays with 3 or more ways as *tensors*.

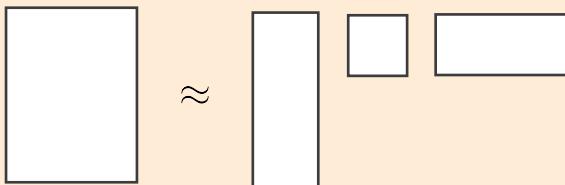
Low-Rank Decompositions: Two Points of View

Low-Rank Matrix Decompositions

Viewpoint 1: Sum of vector outer products, useful for interpretation



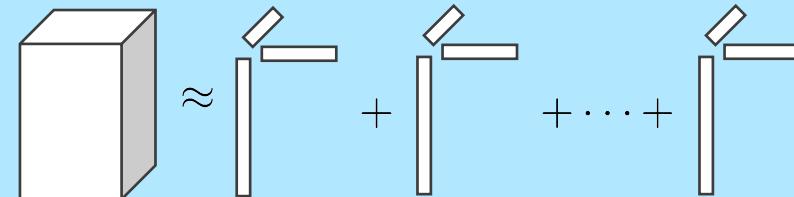
Viewpoint 2: High-variance subspaces, useful for compression



Singular value decomposition (SVD), eigendecomposition (EVD), nonnegative matrix factorization (NMF), etc.

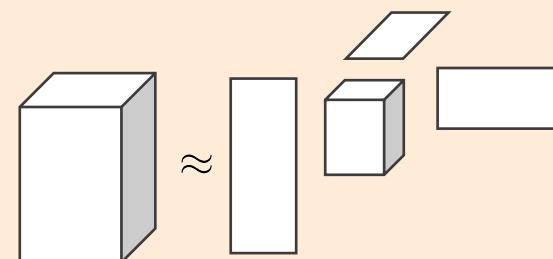
Low-Rank Tensor Decompositions

CP Model: Sum of d -way vector outer products, useful for interpretation



Canonical Polyadic, CANDECOMP, PARAFAC, CP

Tucker Model: Project onto high-variance subspaces to reduce dimensionality

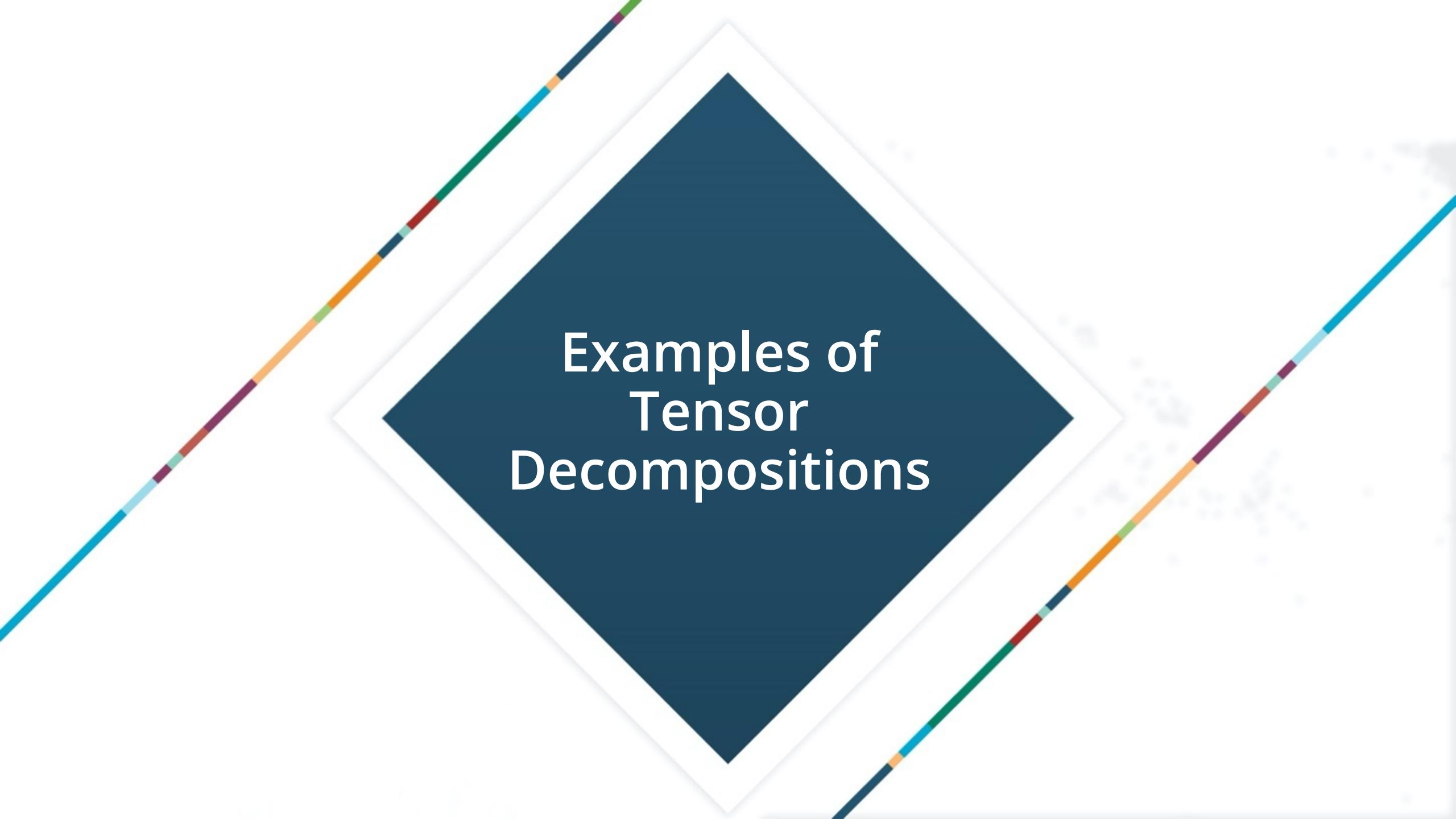


HO-SVD, Best Rank- $(\mathbf{R}_1, \mathbf{R}_2, \dots, \mathbf{R}_d)$ decomposition

Other models for compression include hierarchical Tucker, tensor train, tensor ring, tensor network, etc.

Low-Rank Decompositions: Benefits

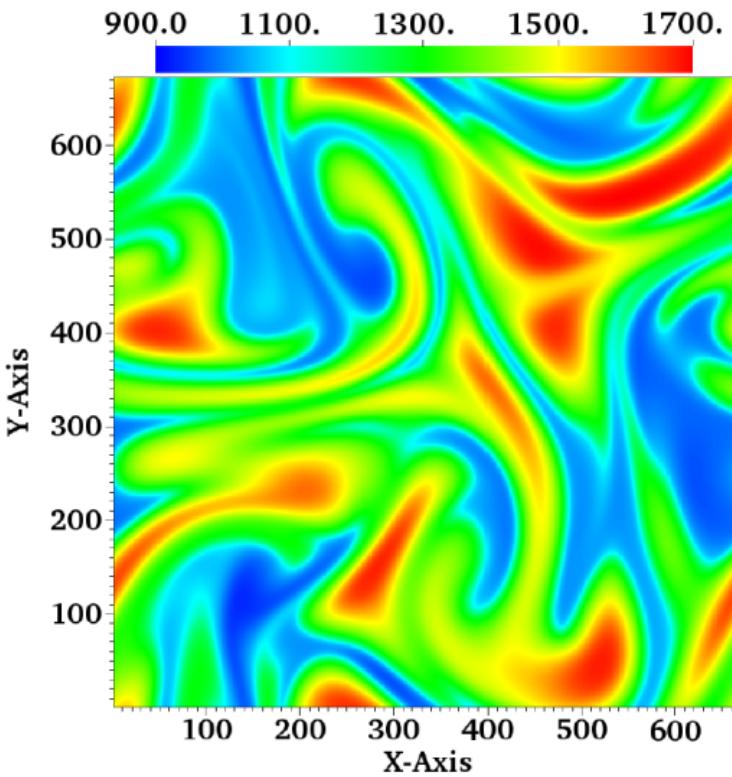
- Unsupervised data models
- Reduced memory usage
- Noise reduction
- Identification of most important patterns and/or strongest signals in data
- Interpretability of complex data relationships



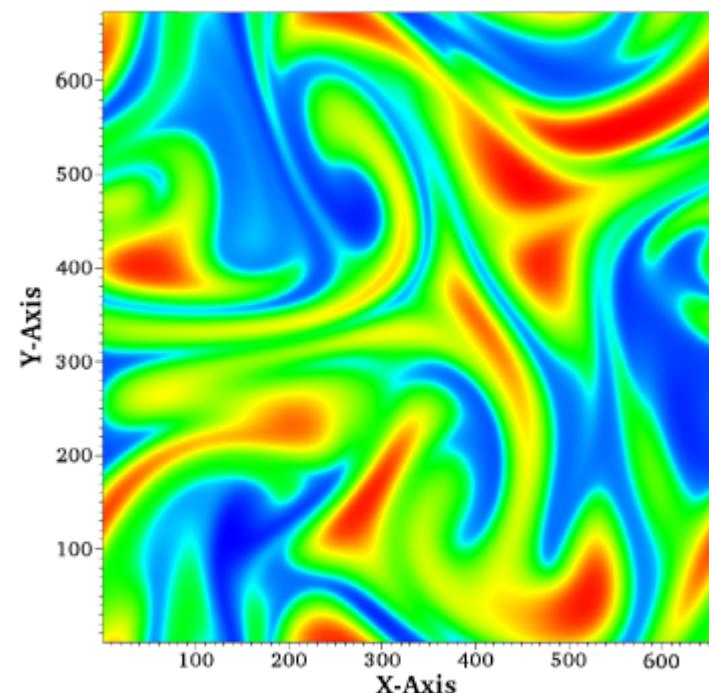
Examples of Tensor Decompositions

Tucker Decompositions: Scientific Computing Data Compression

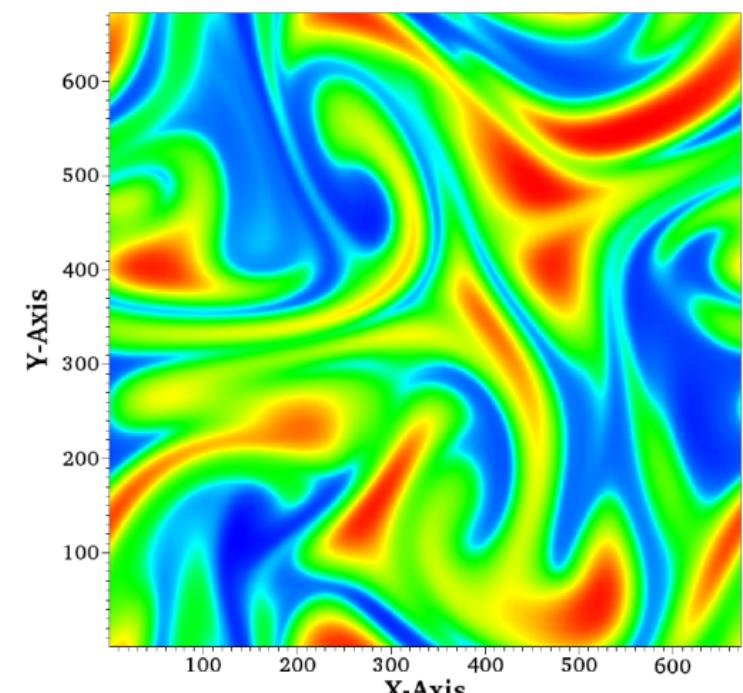
Contour plots of temperature (Kelvin) for combustion processes using simulation data



Original Data
(at one time instance)



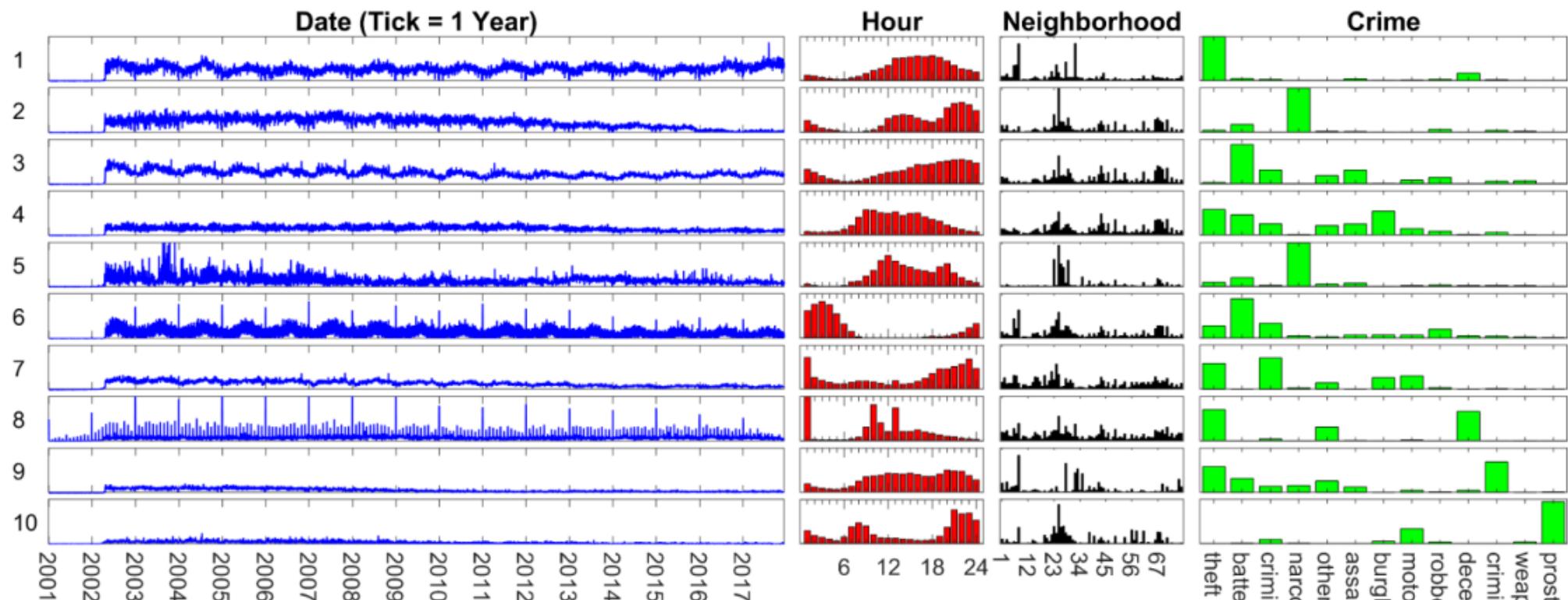
Low-Rank Tensor Data
(~10X compression)



Low-Rank Tensor Data
(~700X compression)

CP Decompositions: Extracting Patterns from Count Data

Crime reports in the city of Chicago, 2001-2017

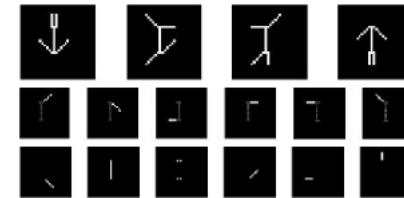


Patterns are groups of latent features (each row of model vector plots).

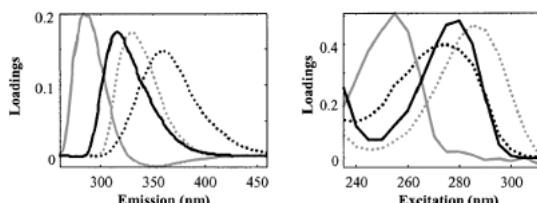
Low-Rank Tensor Decompositions: Numerous Other Applications

- Modeling fluorescence excitation-emission data (chemometrics)
- Signal processing
- Brain imaging (e.g., fMRI) data
- Network analysis and link prediction
- Image compression and classification; texture analysis
- Text analysis, e.g., multi-way LSI
- Approximating Newton potentials, stochastic PDEs, etc.
- Collaborative filtering
- Higher-order graph/image matching
- Neural network model compression

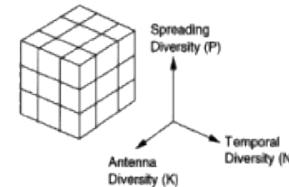
Furukawa, Kawasaki, Ikeuchi, and Sakauchi,
EGRW 2002



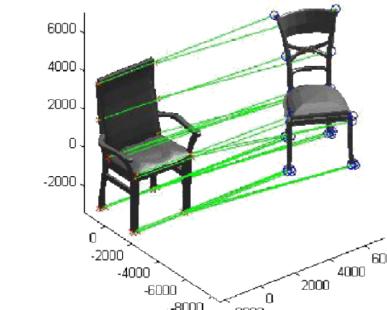
Hazan, Polak, and Shashua,
ICCV 2005



Andersen and Bro,
J. Chemometrics, 2003



Sidiropoulos, Giannakis, Bro, *IEEE Trans. Signal Processing, 2000*



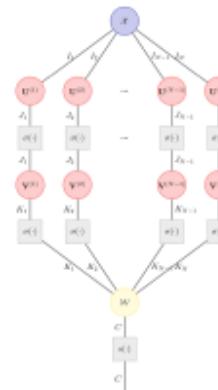
Duchenne, Bach, Kweon, Ponce, *TPAMI 2011*

$$\mathcal{L}(x, t, \omega; u) = f(x, t, \omega) \quad (x, t) \in \mathcal{D} \times [0, T]$$

$$\mathcal{B}(x, t, \omega; u) = g(x, t) \quad (x, t) \in \partial\mathcal{D} \times [0, T]$$

$$\mathcal{I}(x, 0, \omega; u) = h(x, \omega) \quad x \in \mathcal{D},$$

Doostan, Iaccarino, and Etemadi,
J. Computational Physics, 2009



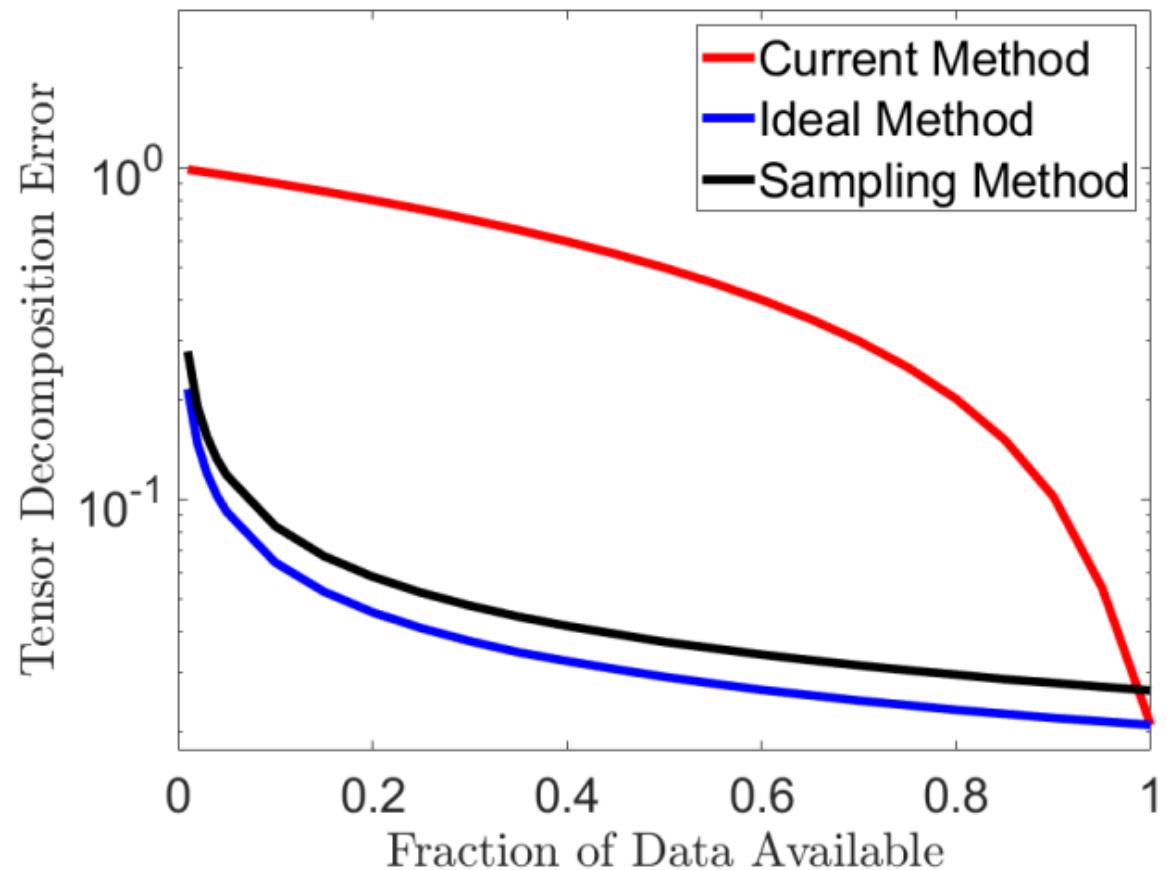
Low-Rank Decompositions & Data Sampling

Large-Scale Data Analysis: Two Approaches

- Scale up computation
- Scale down data

CP Decompositions using Sampling for Sparse Count Data

- **Sparse data challenge:** determining which zeros are true values and which are placeholders in the data arrays
- **Our solution:** ignore zeros and fit tensor decompositions using only samples of non-zero values
- **Benefits:**
 - Better than assuming all zeros are true values (current methods)
 - No *a priori* knowledge of zeros needed (ideal method)
 - Can prove that only a small constant multiple of error will be incurred (our sampling method)



Conclusions

- Many complex datasets can be modeled using low-rank tensor decompositions
- Low-rank decompositions can provide compression and interpretability of data
- Randomized tensor decompositions via data sampling can lead to great savings in terms of computation and memory usage at a modest cost in increased error
 - This is just the beginning of research in this area

Thank You

Low-Rank Tensor Decompositions for Large Sparse Count Data

Danny Dunlavy

dmdunla@sandia.gov

