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P Low-Rank Tensor Decompositions in Data Analysis

*  What are they?
- Why are they useful?

«  How much data is required to use them reliably?




Low-Rank Tensor

Decompositions




/" Tensors: d-way Data Arrays
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We refer to data arrays with 3 or more ways as tensors.




/" Low-Rank Decompositions: Two Points of View
7z

/ Low-Rank Matrix Decompositions Low-Rank Tensor Decompositions

CP Model: Sum of d-way vector outer
products, useful for interpretation

pereare R O

Canonical Polyadic, CANDECOMP, PARAFAC, CP

Viewpoint 1: Sum of vector outer products,
useful for interpretation

Tucker Model: Project onto high-variance
subspaces to reduce dimensionality

s

Viewpoint 2: High-variance subspaces,
useful for compression

Q

Q

HO-SVD, Best Rank-(Ry, R,, ..., Ry) decomposition

Singular value decomposition (SVD), eigendecomposition Other models for compression include hierarchical Tucker,
(EVD), nonnegative matrix factorization (NMF), etc. tensor train, tensor ring, tensor network, etc.

Kolda and Bader (2009), Tensor Decompositions and Applications, hitps.//doi.org/10.1137/07070111X
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P Low-Rank Decompositions: Benefits

Unsupervised data models
« Reduced memory usage
+ Noise reduction
* Identification of most important patterns and/or strongest signals in data

* Interpretability of complex data relationships




Examples of

Tensor
Decompositions




/ Tucker Decompositions: Scientific Computing Data Compression

Contour plots of temperature (Kelvin) for combustion processes using simulation data
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(at one time instance)
Kolla, Aditya, and Chen (2020), Higher Order Tensors for DNS Data Analysis and Compression, https.//doi.org/10.1007/978-3-030-44718-2 6
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P CP Decompositions: Extracting Patterns from Count Data

Crime reports in the city of Chicago, 2001-2017
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Patterns are groups of latent features (each row of model vector plots).

Kolda and Hong (2020), Stochastic Gradients for Large-Scale Tensor Decomposition, https.//dol.org/10.1137/19M1266265



https://doi.org/10.1137/19M1266265

/" Low-Rank Tensor Decompositions: Numerous Other Applications
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Low-Rank

Decompositions
& Data Sampling




P Large-Scale Data Analysis: Two Approaches

» Scale up computation

e Scale down data




P CP Decompositions using Sampling for Sparse Count Data

Sparse data challenge: determining
which zeros are true values and which
are placeholders in the data arrays

—Current Method
-=|deal Method
100~ —Sampling Method|

« Qur solution: ignore zeros and fit
tensor decompositions using only
samples of non-zero values

« Benefits:

« Better than assuming all zeros are true
values (current methods)

* No a priori knowledge of zeros needed
(ideal method)

« Can prove that only a small constant , . . .
multiple of error will be incurred 0 0.2 0.4 0.6 0.8 1
(our sampling method) ' ' ' '

Tensor Decomposition Error

Fraction of Data Available

Lopez, Dunlavy, and Lehoucq (2022), Zero-Truncated Poisson Regression for Zero-Inflated Multivay Count Data, https.//dol.org/10.48550/arXiv.2201.10014
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P Conclusions

« Many complex datasets can be modeled using low-rank tensor decompositions
« Low-rank decompositions can provide compression and interpretability of data

- Randomized tensor decompositions via data sampling can lead to great savings in terms of
computation and memory usage at a modest cost in increased error
« Thisisjust the beginning of research in this area
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