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Introduction
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• Inverter based resources (IBR) have low overcurrent capability
• Photovoltaic inverters usually have less than 1.25 p.u. of current capability
• Energy storage inverters have less than 3.00 p.u. of capability

• Traditional fault protection utilizes overcurrent detection
• IBRs cannot sufficiently provide fault current to trip protection devices unless there is a very 

large generation to load ratio

• Other options for fault detection are needed for systems with high penetration of IBRs, or 
100% IBR microgrids
• Negative- and zero-sequence current detection can be used for unbalanced faults

• Grid-forming inverters (GFMIs) can provide negative- and zero-sequence current 
depending on control scheme

• Common grid-following inverters (GFLIs) used for PV systems only provide positive-
sequence current
• Other methods are needed to support the system during a fault



Background
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• GFMIs are not a technology, but how they are utilized has changed over the years
• Initially developed for standalone systems, no synchronizing scheme
• Now they are used for grid support and for microgrid applications

• PV inverter penetration is increasing, but GFLIs are not a perfect system
• Require a voltage and frequency reference
• Must meet copious requirements for grid interconnection standards
• Modern standards require voltage and frequency ride throughs and Grid Support Functions (GSFs) that are 

a valuable assets for grid stability
• Are commonly used for intermittent resources
• High penetration reduce inertia of a system

• GFMIs with proper control schemes can mimic synchronous machines
• Provide balanced and unbalanced load support
• Can emulate inertia for grid stability
• Still current-limited when compared to synchronous machines



Experimental Setup
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• Equipment Under Test
• 100 kW GFMI (energy storage inverter w/ Virtual 

Synchronous Machine (VSM) control)
• 24 kW GFLI (PV inverter)

• DC Sources
• NH Research 9300 100 kW Battery Emulator
• Ametek TerraSAS 100 kW PV Simulator
• Set to 1.15 p.u. of GFLI rated power

• Load Bank
• 0-150kW delta configuration resistive load

• Fault
• 150kW single phase load (approximately 0.5 ohm)

• Bus Separation
• 1mH series inductor bank
• Emulating approximately 500m of line length.

Fig. 1: Experimental Lab Test Configurations, Single Bus Fault (a),
GFLI Side Fault (b), and GFMI Side Fault (C)



Baseline Testing
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• GFMI subjected to 150kW single phase load
• 4.5 p.u. of line rating
• No additional load
• GFLI removed from system

• All three phase voltages affected
• Inverter provided negative-sequence 

current, transformer provided zero-
sequence current

• Voltage drop on Phase A to 0.536 p.u.
• Fault current of 2.462 p.u. of GFMI line 

current rating
Fig. 3: GFMI Subjected to 150kW Single Line Fault



Single Bus Configuration, GSF Disabled
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• GFLI added to the test system
• 24 kW balanced resistive load added to 

system to compensate for GFLI generation

• GFLI initially went into momentary 
cessation during the fault
• GFMI had to support fault and load
• System voltage reduced to 0.511 p.u.

• GFLI parameters adjusted to ensure device 
will not go into momentary cessation

• After rerunning test
• Voltage of 0.563 p.u. and a total fault 

current of 2.588 p.u. of GFMI rated current
• GFMI provided 2.501 p.u. of fault current
• GFLI supported full load and part of fault (0.36 

p.u. of its rated line current)
• Current oscillation seen from GFLI
• Reactive power seen even though GSF are 

disabled
• Due to Phase-Locked Loop cannot maintain 

synchronization

Fig. 5: Configuration A, GSF Disabled, 24kW Load, IBR, Load
Power and Sequence Current Injections



Single Bus Configuration, GSF Disabled Continued
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• Resistive load increased to 49kW
• 24 kW for GFLI production
• 25 kW for 25% of GFMI rating

• System voltage was reduced to 0.481 p.u. 
following the fault

• Total fault current of 2.329 p.u. of GFMI 
rated line current
• GFMI supplied 2.307 p.u.
• Most of load provided by GFLI

Fig. 6: Configuration A, GSF Disabled, 49kW Load, IBR, Load
Power and Sequence Current Injections



Single Bus Configuration, GSF Enabled
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• VV and FW enabled in GFLI
• First test performed with FW profile with pre-

disturbance power of 24 kW

• Immediately after fault onset, inverter 
response is very similar

• VV begins to function within 250ms
• System voltage was 6.5% (of nominal) greater 

than test w/o GSFs
• Total fault current of 2.545 p.u. of GFMI rated 

line current - Fully supported by the GFMI
• GFMI also covered small portion of load
• Reactive power of GFLI still increasing 

following removal of fault
• GFLI inevitable tripped due to over-voltage event
• Slow VV response time was set

• VV is supporting system voltage during fault

Fig. 7: Configuration A, GSF Enabled, 49kW Load, IBR, Load
Power and Sequence Current Injections



GFLI Side Fault Configuration, GSF Disabled
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• IBRs split by series line inductance
• Load placed on GFMI bus
• Fault placed on GFLI bus

• Total fault current of 1.958 p.u. of GFMI 
line rating observed
• GFMI bus comparable to single bus, GSF 

disabled test
• GFLI bus was over 6% lower than GFMI bus

• Still observing consistent dynamics of the 
fault inverters

• Little to no load supported by GFMI
Fig. 8: Configuration B, GSF Disabled, 49kW Load, IBR, Load
Power and Sequence Current Injections



GFLI Side Fault Configuration, GSF Enabled
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• VV and FW enabled in GFLI
• Test only performed with FW profile with 

pre-disturbance power of 24 kW

• Voltage increase of 6% seen on both buses
• 2.238 p.u. of GFMI rated line current was 

seen for total fault current
• Better bus voltages and fault current
• Still lower GFLI bus voltage than single bus 

case

• GFMI supported load as GFLI real power 
was decreased by VV function

• Having fault away from primary source or 
voltage source is not ideal for system 
support

Fig. 9: Configuration B, GSF Enabled, 49kW Load, IBR, Load
Power and Sequence Current Injections



GFMI Side Fault Configuration, GSF Disabled
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• Load and fault locations were reversed
• Fault now on GFMI bus

• 3.5-4.5% increase in voltage from single 
bus, GSF disabled test
• Voltage drop along line length was minimal, 

around 1% lower in GFLI bus

• Total fault current of 2.404 p.u. of rated 
GFMI line current

• Still very little load being supported by 
GFMI

Fig. 10: Configuration C, GSF Disabled, 49kW Load, IBR, Load
Power and Sequence Current Injections



GFMI Side Fault Configuration, GSF Enabled
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• VV and FW enabled in GFLI
• Test only performed with FW profile with 

pre-disturbance power of 24 kW

• 1.5-4.5% increase in voltage was seen on 
the two buses
• GFLI side was now around 1.0-1.5% greater 

than the GFMI bus
• Highest average bus voltage (other than 24 

kW load test)

• Total fault current of 2.497 p.u. of GFMI 
rated line power

• Current being supplied to load from GFMI
• Still had high bus voltages even though 

current flow through inductors
Fig. 11: Configuration C, GSF Enabled, 49kW Load, IBR, Load
Power and Sequence Current Injections



Conclusion
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• Different technologies have unique responses to faults due to their physics and controls
• It is important to understand these differences

• GFLIs with GSFs can help support the system during a fault
• If the fault is near the GFLI or far away from the primary source, having GSFs enabled (specifically 

VV) is more important than the GFLI supporting the load.

• Ensuring that GFLIs do not go into momentary cessation is crucial to support the system, 
and not rely on only grid-forming devices

• Fault recovery is additionally important
• Too aggressive or slow of a response can lead to over voltage or frequency events and cause 

GFLIs to trip putting all the load on GFMIs
• IBR response times and settings are vital to both fault support and recovery



Thank You
14


