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The idea behind GMRES
the (Generalized Minimum RESidual Method):

To solve Ax = b, where A is n X #:
1. Build an orthonormal basis for a Krylov subspace:

span{b,Ab,A%b, ... A" 1p}

2. Use an orthogonal projection to find an approximate solution which
minimizes the residual: I

I'b—Ax I,



3 1| GMRES (Generalized Minimum RESidual) Algorithm:

Algorithm GMRES (Modified Gram-Schmidt)

1: v = ||b||]2 and vy = b/~

2: forj=1: mdo

3 w; = Ay, < Sparse Matrix-Vector Product
4: fori=1:jdo —  (SpMV)

5: h; = v]w;

6: wj = wj — hjv; Orthogonalizing the next
7: end for basis vector

8 hip1y = ||lwj2.

9 Vip1 = Wj/hjp,

10: end for -

11: Define the (m + 1) x m matrix H = {h;}

12: Solve least-squares problem Hd = ~e; for d.

13: X = Vpd

Restart when subspace size gets too large!

See details in “Iterative Methods for Sparse Linear Systems 2" ed.” by Saad.



+ I Implementing the Polynomial Preconditioner

Ap(A)y = b,
x = p(A)y.

[See: Toward Efficient Polynomial Preconditioning for GMRES, J. Loe and R. Morgan,
Numerical Linear Algebra with Applications, December 2021.]



s | Generating the polynomial preconditioner:
p(A) has degree d-1; Ap(A) has degree d

1. Run one cycle of GMRES(d) using a random starting vector.

2. Find the harmonic Ritz values 61, .. ., 84, which are the roots of
the GMRES polynomial:
With Arnoldi decomposition AVy = Vg4 1Hg41 4, find the
eigenvalues of H, , + h3+1,dfe§, where f = H; je, with

elementary coordinate vector ey = [0,...,0,1]".
3. Order the GMRES roots with modified Leja ordering [Bai, Hu,
Reichel]

(This ordering uses products of absolute values of differences of
roots.)



s | Remapping Eigenvalues (Symmetric Matrix)
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7 I Polynomial Preconditioning to Accelerate ILU:

=Compose polynomial preconditioning with other preconditic Agwp{ ﬁh'lsif}y — b
1

=Matrix lll Stokes.

r= Mp(AM)y.

=I[LU(0.001) is computed from the shifted matrix A + 0.001/
degree d cycles Mups vopSs dot products time
No Standard Preconditioning
1 485,042 | 2.43 x 10" | 1.36 x 10 6.43 x 10° 21.6 hours
50 + 5 1072 2.95 % 10° | 5.90 * 10° 1.42 % 10° 29.9 min’s
100 +20 | 277 | 1.66x10° | 2.43x10° | 3.71%10° | 15.2 min’s
With ILU Preconditioning

1 958 47.902 | 2.69 % 10° 1.27 % 10° 211 sec’s
50 3 7051 16,978 4799 13.6 sec’s
100 + 10 2 7691 21,273 6668 14.8 sec’s




s I Why incorporate lower precisions in GMRES?

*Reduce data movement to overcome memory-bound algorithms.

=Use cheaper floating-point operations.

Obstacles to lower precision:
=Lower precision computations result in more roundoff error!
=..but applications still need high level of accuracy in solutions.

=Tricky to find where to use lower precision in algorithm while maintaining
accuracy.

So how DO we use lower precision in GMRES?



o | lterative Refinement with GMRES (GMRES-IR)

Algorithm 1 Iterative Refinement with GMRES Error Correction

1: rg = b— Axg doublel

2: for 7 =1,2,... until convergence: do

3: Use GMRES(m) to solve Au; = r; for correction u; |[single]
4: xi11 = x; + u; |double

5 riv1 = b— Ax;q |[double]

6: end for

(At each restart, update solution vector and recompute residuals in double
precision.)

Note: We store TWO copies of matrix A (double and single).

Not a new algorithm. See related works:

oNeil Lindquist, Piotr Luszczek, and Jack Dongarra. Improving the performance of the GMRES method using
mixed-precision techniques.

oHartwig Anzt, Vincent Heuveline, and Bjorn Rocker. Mixed precision iterative refinement methods for linear
systems: Convergence analysis based on Krylov subspace methods.

oErin Carson and Nicholas J. Higham. Accelerating the solution of linear systems by iterative refinement in
three precisions.



double?

Atmosmodj:

» SuiteSparse, cfd

* n=1,270,432

* GMRES Double: 5.12s, 1740 iterations
 GMRES-IR: 3.78s, 1750 iterations

BentPipe2D1500:

» 2D convection-diffusion

* n=2.25 million

* GMRES Double: 50.26s, 12,967 iterations
 GMRES-IR: 38.03s, 13,150 iterations

GMRES-IR convergence follows
convergence of GMRES Double!

Relative Residual Norm

Relative Residual Norm

11 I How does convergence of GMRES-IR compare to GMRES
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Kernel Speedup:

Solver Timings
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BentPipe2D1500

B2
o
£
=~
Double IR Double IR
EEA GEMV (Trans) EER SPMV
2 Norm EEE Other
EEE GEMV (No Trans)

Atmosmodj: BentPipe2D1500:
 GMRES Double: 50.26s, 12,967 iterations

* GMRES Double: 5.12s, 1740 iterations
 GMRES-IR: 3.78s, 1750 iterations  GMRES-IR: 38.03s, 13,150 iterations



13 I Kernel speedups compared with other matrices:
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4 I A model for L2 cache use with low precision SpMV:

Suppose that A has w nonzero elements per row and n rows (so nnz = w+n).

A stored in CSR format with 2 vectors of size w * n:
Values of A: A, Column indices: colld (Ignore vector of row ptrs)

Computing the first dot product of the SPMV:

w—1

Y Avatli] * x[colId[i]].

1=0

Case: fp64 with no cache reuse (i.e. every element of x has to be read into cache every time needed):
n * w * [size(int) + 2 * size(double)] = 20wn.

Case: fp32 with “perfect” cache reuse (i.e. any elements of x read into cache stay in cache until not needed):

nxwx|size(int)+size( float)|+nxsize( float) = (8w-+4)n.

20wn  dw
(Bw+4)n  2w+1

Expected speedup: . — 2.5 2as w gets large.

** Thanks to Christian Trott and Luc-Berger Vergiat for help in creating this model!



5 1 SPMV Speedup vs Nonzero Structure of Matrix:

Very good speedup
for matrices w/
small nnz/row.

Three smallest
matrices in test set.

Speedup SpMV Double to Float
N

*  Max nnzirow < 15
T Maxnnzirow == 15 | 4

200 250 300 350

Max Nonzeros in a Row

Large max nonzeros
per row; low SpMV
speedup



1 I How does preconditioning affect GMRES-IR

convergence?
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Preconditioned GMRES-IR convergence still follows convergence ‘
of GMRES Double!



17 I Polynomial Preconditioning

0 5Solver Timings Stretched2D1500 Poly Prec

B Orthogonalization

- *k
LEFT: GMRES double w/ fp64 20 |- A%x -
polynomial preconditioner. = Other
MIDDLE: GMRES double w/ fp32
polynomial preconditioner. = 15
RIGHT: GMRES-IR w/ fp32 GSJ
polynomial preconditioner. 2 10
Polynomial preconditioning shifts 5
main expense to SpMV rather than
dense orthogonalization kernels.

0
Double Single IR Single
Prec Prec Prec
Solve Type

**For polynomial preconditioning details, see:
Jennifer Loe, Erik Boman, and Heidi Thornquist. Polynomial Preconditioned GMRES in Trilinos: Practical Considerations for High-Performance

Computing



18 ‘ Results from SuiteSparse Matrices:

UF id Matrix Name
2266 atmosmod;j

2267 atmosmodl

1858 crashbasis

1849 Dubcova3

1852 FEM_3D_thermal2
1853 parabolic_fem
1367 SiO2

895 stomach

894 lung2
1266 hood

805 cfd2
1431 filter3D

2649 Transport
BentPipe2D1500
Laplace3D150
UniFlow2D2500
Stretched2D1500

N prec
1,270,432
1,489,752
160,000
146,698
147,900
525,825
155,331
213,360
204,316
109,460 j 1
220,542 | 42
123,440 p 25
106,437 p 25
1,602,111 p 25
2,250,000
3,375,000
6,250,000
2,250,000 p 40

Time

Double
Iters
5.12 1740
1.61 446
0.55 431
1.15 1131
0.84 775
42.39 27493
18.23 17385
0.51 359
0.27
0.46 206
13.98 5762
6.05 1092
25.24 4449
8.35 339
50.26 12967
16.93 2387
29.62 2905
22.66 482

Time

IR
Iters

3.78 1750
1.23 450
0.52 450
1.05 1150
0.80 800
44.63 36600
16.86 17600
0.52 400
250

9.04 5000
455 1100
18.12 4450
8.73 450
38.03 13150
11.75 2400
21.17 3000
14.37 500

*prec column:

p = polynomial prec w/
degree

j = Jacobi prec w/ block size

Blue: Block Jacobi
Preconditioned

Green: Polynomial
Preconditioned



19 I Future Work:

‘Implement GMRES-IR in Tpetra solvers in Belos package of Trilinos

‘Make GMRES (double) with single precision preconditioning available in
Tpetra Belos solvers.

*Incorporate half precision computations (fp16 and bfloat16).

*Test performance on other (non-NVIDIA) GPU architectures- AMD and
Intel.

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of
Science and the National Nuclear Security Administration.



