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Introduction
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• Renewable energy resources are becoming more prevalent
• These resources are commonly inverter based (IBRs)

• Grid-following inverters (GFLIs) do not provide real or emulated inertia
• Commonly used for Photovoltaic (PV) systems
• Other means are required to help grid stability

• Modern grid interconnection standards look to fix this
• Grid support functionalities (GSFs) are common on more recent inverters

• Grid-forming inverters (GFMIs) commonly use a form of droop control for load sharing and 
paralleling to primary sources
• Droop characteristics are similar to GSFs such as volt-var (VV) and frequency-watt (FW) in 

response to deviations in voltage reference



Background
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• IEEE Std 1547-2003 created following influx of PV systems
• No GSFs, no voltage or frequency ride throughs
• Inverters tripped when outside of normal operating conditions
• Minimal acceptance of IBRs on the utility

• IBRs started to become more prevalent, especially in California
• Couldn’t wait for 1547 to be revised, CA took initiative
• CA Rule 21 revised
• Requirement of VV functionality, w/ reactive power priority
• FW was optional

• IEEE Std 1547-2018 addressed needs for additional GSFs
• Includes VV, FW, watt-var and volt-watt
• Indication of growing acceptance for distribution level IBRs as a capability

• GFMIs with droop capability and potential for providing emulated inertia are viable 
replacement for synchronous machines.



Experimental Setup
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• Equipment Under Test
• 100kW GFMI (energy storage inverter w/ Virtual 

Synchronous Machine (VSM) control)
• 24kW GFLI (PV inverter)

• DC Sources
• NH Research 9300 100kW Battery Emulator
• Ametek TerraSAS 100kW PV Simulator

• Grid Tied Testing
• Ametek RS-90 Regenerative Grid Emulator

• Islanded Testing
• 0-150kW delta configuration resistive load
• 0-150kVar delta configuration inductive load



GFLI Frequency Response
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• Inverter Settings
• Most aggressive FW profile according to 1547-2018
• Open loop response times set to 0.0, 0.2, 1.0, 5.0, and 10.0 s

• Grid Emulator Settings
• Voltage held at 277/480 V
• Frequency changed from 60 to 61 Hz
• Rate of Change of Frequency (ROCOF) of 3 Hz/s used for all 

OLRT
• 10 and 100 Hz/s tested at 0.0 s OLRT

• Results
• Response time of around 7.3 s when set to 10.0 s OLRT 
• Slow ROCOF should not have affect on response time

• Fastest response of around 500 ms seen with 0.0s OLRT at 
10Hz/s

• Response time limitation probably due to interference between 
rapid change and Phase-Locked Loop control used in GFLIs

Fig. 2: GFLI Frequency Response, 100 Hz/s Ramp to 61 Hz



GFLI Voltage Response
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• Inverter Settings
• Most aggressive VV profile according to 1547-2018
• Open loop response times set to 2.0, 5.0, and 10.0 s

• Grid Emulator Settings
• Frequency held at 60 Hz
• Voltage changed by ±2.0% of Vnom (277/480 V) in 1 ms

• Results
• At 10.0 s OLRT, a response time of around 12.3 s was seen in the negative voltage change direction, 

and around 10.3 s in the positive direction
• Slower response in the negative direction is due to the inductance of the output filter

• Approximately 3.1 s and 2.2 s response time seen for the 2.0 s OLRT in the negative and positive 
directions respectively

• EUT did not allow to set faster OLRT



GFMI Grid-Tied Frequency Response
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• Inverter Settings
• 2% frequency droop set to match GFLI FW slope, voltage droop left at default 5%
• Inertia time constant (ITC) kept at default 1000 ms

• Grid Emulator Settings
• Voltage held at 277/480 V
• Frequency changed to ±1% of Fnom (60 Hz)
• ROCOF of 3, 10, and 100 Hz/s tested

• Results
• Slowest response of approximately 820 ms seen on negative frequency change at 3 Hz/s
• For each ROCOF, the slower response was always in the negative frequency direction

• Fastest response of 670 ms at 100 Hz/s
• GFMI w/ VSM control response similarly fast to GFLI



GFMI Grid Tied Frequency Response Continued
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• Additional Tests
• Various ITC and droop setpoints used to slow down response
• ITC set to 1000, 2000, 5000, and 10000 ms
• Droop set to 2, 5, and 10%

• Frequency was changed with grid emulator such that around 0.5 p.u. of real power would drawn 
from the GFMI

• ROCOF of 100 Hz/s used to take response delay out of the equation

• Results
• Minimal increase in response time with some abnormalities



GFMI Islanded Frequency Response
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• Inverter Settings
• Droop set to match initial GFMI grid tied testing
• Default ITC
• Set to blackstart

• Load Settings
• Delta configuration resistive load bank
• Block load from 0 kW to 20, 40, and 60kW

• Results
• For 20kW load response to 1% of settled power was 20 ms
• Around 210 ms response to 1% of settled power for 60kW load



GFMI Islanded Frequency Response Continued
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• Additional Tests
• Various ITC and droop setpoints used to slow down 

response
• ITC set to 1000, 2000, 5000, 10000, and 30000 ms
• Frequency droop set to 2, 5, and 10%

• 50kW block load was used

• Results
• Response time ranged from 60 ms to 2.3 s (without signs of 

instability)
• Voltage overshoot seen following load onset on tests at high ITC

• At 10000ms, power oscillation seen for 2% droop test until 
stabilizing after 4.8 s

• At 30000 ms ITC and 2% droop, the GFMI never reached stability

Fig. 3: GFMI, Islanded Frequency Response, 2% Droop, 1000 ms
Inertia Time Constant

Fig. 4: GFMI Islanded Frequency Response, Initial Sign of Instability



GFMI Grid-Tied Voltage Response
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• Inverter Settings
• 1% and 5% selected for testing
• ITC of 1000, 2000, and 5000 ms tested

• Grid Emulator Settings
• Frequency held at 60 Hz
• Voltage changed by ±2.5% of Vnom (277/480 V) for 1% droop and ±5.0% of Vnom (277/480 V) for 1% 

droop
• These changes in voltage resulted in around 0.50 p.u. reactive power

• Results
• Little variability seen between ITCs



GFMI Islanded Voltage Response
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• Inverter Settings
• 1% and 5% used for testing
• ITC of 1000, 2000, and 5000 ms tested

• Load Settings
• Delta configuration inductive load bank
• Block load from 0 kW to 50kVar (inductive)

• Results
• Both droops initially respond to block load in approximately 

230 ms
• 5% droop increases to around 550 ms and 1.6 s with 

increasing ITC
• 1% droop took upwards of 3.3 s to stabilize at higher ITCs
• Voltage drop to nearly 0.80 p.u. of Vnom at onset of load

Fig. 5: GFMI, Islanded Voltage Response, 1% droop, 5000 ms Inertia 
Time Constant, 50kVAr Load



Conclusion and Why this is all Important
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• Both GFMIs and GFLIs can be fast responding
• Going to be limited by control schemes

• GFMIs can pick up the majority of load very quickly
• GFLIs are easily adjustable for standards compliance
• Dependent on control, over adjustment of parameters can lead to instability if not careful

• Understanding how IBRs respond to fluctuations in grid voltage and frequency
• Having flexibility in response time is crucial to better match non-IBRs for grid stability
• Knowing how quickly GFMIs (and GFLIs) can pickup and share load is vital for IBR based 

microgrids
• Having an understanding where IBRs can go unstable is crucial



Thank You
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