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What is Multifidelity UQ?

- inflow (\ R];:;:l-ls
Simulation alternatives \/\ﬁ

« Distinct model forms from solving different equation sets *(
 Significant cost separation but discrepancy is more complex /

Hybrid RANS/LES

» Discretization levels / resolution controls
« Exploit special structure: discrepancy - 0 at order of spatial/temporal convergence

« Combinatorial ensemble for
multiphysics, multiscale

Single-fidelity approaches are widespread and typical model development practices lead to an error imbalance
* A single high-fidelity model, with spatial/temporal resolution appropriately addressed through solution verification
« Effective resolution of deterministic bias, but often leading to large stochastic errors (e.g. from restricted sampling)

Mean Square Error:
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« Multifidelity UQ optimizes the allocation of simulation resources subject to achieving an error target...
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Multifidelity UQ Example: optimal resource allocation in Multilevel MC  daonat

Expectations are distributed across levels to decompose variance:
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Design variable to optimize
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Optimal sample profile

* Optimize the allocation of resources across multiple models
Key Ideas: |+ Manage approximations in a principled manner: extract value without reliance
 “Fuse” data in order to obtain results that are consistent with HF but at reduced cost




Generalized framework for multilevel / multifidelity estimators

Depiction of
sample sets
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(a) W-RDiff sampling strat. (b} MFMC sampling strat. \c] ACV-IS sampling strat. (d) ACV-MF sampling strat. /
MLMC 1D: hierarchical, recursive Analytic
CVMC 1D: HF,LF pair Analytic
MLCV MC 2D: HF,LF pair + resolutions Analytic
MFMC 1D: hierarchical, recursive Analytic, Numerical
ACV Unordered ensemble, non-recursive Numerical
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Performance bounds for

recursive vs. non-recursive

* Recursive limited by variance
reduction of perfect p, (OCV-1)

* Non-recursive exploits gap
between OCV-1 and OCV

Gorodetsky, Geraci, E., Jakeman, “A generalized approximate control variate framework for multifidelity UQ,” JCP 408 (2020)
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Key mission feedbacks

Multilevel performance on elliptic model PDEs is compelling, but does not accurately represent Sandia mission areas
« Extensions for complex multidimensional hierarchies - multi-index collocation, multiphysics / multiscale
* Investments in non-hierarchical MF methods - ACV and MFNets

Popular MF approaches neglect important practicalities

* "Oracle” correlations assumed > iterated versions of MFMC, ACV to reduce cost from pilot over-estimation
* Imperfect data > embedded cross validation in regression-based surrogate MF

« Dissimilar parameterizations - shared subspaces to link and correlate diverse models

« Stochastic simulations, simulation/surrogate error estimation - extended error management framework

* Heterogeneous ensemble management = integration with HPC workflow managers, R&D in ensemble AMT
* Free hyper-parameters in LF approximations - model tuning

MF methods most often utilize a fixed model ensemble determined by expert judgment

» Experts are often inaccurate in this context (intuition is often wrong as trade-offs are not obvious)
« Physics SMEs often have high predictivity standards and tend to over-estimate the LF accuracy required
* Leads to non-optimal correlation / cost trade-off and sub-optimal MF UQ

- Exploration of hyper-parameter model tuning, within the context of particular estimators (ACV, MFMC, ...)




Model Tuning Approaches: All-At-Once and Bi-Level
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Model tuning performed to maximize performance of a particular estimator over tunable hyper-parameters
associated with one or more low-fidelity models (HF reference is immutable)

AAQ optimization (in Python):
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Hyper-parameters @ integrate as additional decision vars
Potential for greater efficiency: one integrated higher-D solve
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Bi-level optimization (in Dakota):
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1D/2D verifications with
tunable model problem: 12
* 5 estimators x

3 solution modes
» Optimal #depends
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Estimator ¥ariance

on estimator o8
* Iterated approach
achieves oracle 08

accuracy at lower cost

lterated: Online Pilot = 25

Inner loop solve for each outer loop & iterate
Plug & play outer loop with global, surrogate-based, MINLP

Efficient global optimization

(EGO) navigates noisy space

and locates multiple minima

* ACV flexibly adapts to
model reconfiguration

E., Geraci, Portone, Gorodetsky, Jakeman, “All-at-Once (and Bi-Level) Model Tuning for Multifidelity Sampling,” SIAM UQ22.




