
Simulation alternatives
• Distinct model forms from solving different equation sets

• Significant cost separation but discrepancy is more complex

• Discretization levels / resolution controls
• Exploit special structure: discrepancy  0 at order of spatial/temporal convergence

• Combinatorial ensemble for 
multiphysics, multiscale

What is Multifidelity UQ?

Single-fidelity approaches are widespread and typical model development practices lead to an error imbalance
• A single high-fidelity model, with spatial/temporal resolution appropriately addressed through solution verification
• Effective resolution of deterministic bias, but often leading to large stochastic errors (e.g. from restricted sampling)

• Multifidelity UQ optimizes the allocation of simulation resources subject to achieving an error target…
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Multifidelity UQ Example: optimal resource allocation in Multilevel MC

Minimize aggregate cost 
Balance deterministic and stochastic errors

Optimal sample profile

Level 
independent

Level 
dependent

• Optimize the allocation of resources across multiple models
• Manage approximations in a principled manner: extract value without reliance
• “Fuse” data in order to obtain results that are consistent with HF but at reduced cost

Key Ideas:

Expectations are distributed across levels to decompose variance:

M. Giles, “Multilevel 
Monte Carlo path 
simulation,” 2008.

KKT Optimality
minimize

s.t.

Design variable to optimize



Generalized framework for multilevel / multifidelity estimators

Depiction of 
sample sets 
{z1, z2} for 
model i

Gorodetsky, Geraci, E., Jakeman, “A generalized approximate control variate framework for multifidelity UQ,” JCP 408 (2020)

Monomial test 
problem

Performance bounds for 
recursive vs. non-recursive
• Recursive limited by variance 

reduction of perfect m1 (OCV-1)
• Non-recursive exploits gap 

between OCV-1 and OCV

Estimator Type Sample allocation
MLMC 1D: hierarchical, recursive Analytic
CVMC 1D: HF,LF pair Analytic
MLCV MC 2D: HF,LF pair + resolutions Analytic
MFMC 1D: hierarchical, recursive Analytic, Numerical
ACV Unordered ensemble, non-recursive Numerical



Multilevel performance on elliptic model PDEs is compelling, but does not accurately represent Sandia mission areas
• Extensions for complex multidimensional hierarchies  multi-index collocation, multiphysics / multiscale
• Investments in non-hierarchical MF methods  ACV and MFNets

Popular MF approaches neglect important practicalities
• "Oracle” correlations assumed  iterated versions of MFMC, ACV to reduce cost from pilot over-estimation
• Imperfect data  embedded cross validation in regression-based surrogate MF
• Dissimilar parameterizations  shared subspaces to link and correlate diverse models
• Stochastic simulations, simulation/surrogate error estimation  extended error management framework
• Heterogeneous ensemble management  integration with HPC workflow managers, R&D in ensemble AMT
• Free hyper-parameters in LF approximations  model tuning

Key mission feedbacks

MF methods most often utilize a fixed model ensemble determined by expert judgment
• Experts are often inaccurate in this context (intuition is often wrong as trade-offs are not obvious)

• Physics SMEs often have high predictivity standards and tend to over-estimate the LF accuracy required
• Leads to non-optimal correlation / cost trade-off and sub-optimal MF UQ

 Exploration of hyper-parameter model tuning, within the context of particular estimators (ACV, MFMC, ...)



Model Tuning Approaches: All-At-Once and Bi-Level 

Model tuning performed to maximize performance of a particular estimator over tunable hyper-parameters 
associated with one or more low-fidelity models (HF reference is immutable)

E., Geraci, Portone, Gorodetsky, Jakeman, “All-at-Once (and Bi-Level) Model Tuning for Multifidelity Sampling,” SIAM UQ22.
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Hyper-parameters q integrate as additional decision vars
Potential for greater efficiency: one integrated higher-D solve

Bi-level optimization (in Dakota):

Inner loop solve for each outer loop q  iterate 
Plug & play outer loop with global, surrogate-based, MINLP

AAO optimization (in Python):

Iterated:  Online Pilot = 25

1D/2D verifications with 
tunable model problem:
• 5 estimators x 

3 solution modes
• Optimal q depends 

on estimator
• Iterated approach 

achieves oracle 
accuracy at lower cost

ACV-MF

Efficient global optimization 
(EGO) navigates noisy space 
and locates multiple minima 
• ACV flexibly adapts to 

model reconfiguration

ACV-MF


