Thislpaperldescribesfobiectiveftechnicallresultslandlanalysis JAnyisubiectivelviewslorjopinionslthamightibelexpressedfin| SAND2022-7460C
helpaperfdojnotinecessarilyfrepresentlthefviews|ofltheJU.S JDepartmentjoflEnergyforithejUnitedfStatesjGovernment.
Sandia

National
Laboratories

Polynomial Preconditioning with th
GMRES Polynomial

Jennifer Loe, Sandia National Laboratories

With collaborations from:

Ron Morgan (Baylor Univ.), Mark Embree (Virginia
Tech),

. . py—ry . ; : (R 2o VS
Erik Boman (Sandia Labs), Heidi Thornquist (Sandia Sl R
L a b S) Sandia National Laboratories is a

multimission laboratory managed and
operated by National Technology &
Engineering Solutions of Sandia, LLC, a
wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security

SARD20Z 32 PE

SandialNationalfLaboratoriesfislalmultimissionllaboratorvimanagedlandjoperatedibylNationalfTechnologvi&IEngineerinalSolutionsiofiSandia ILLC
subsidiaryjoff[Honeywelljinternationalfinc. JforitheJU.S JDepartmentfoflEnergy'siNationalNuclearlSecuritylJAdministrationfunderficontracDE-N

Jalwhollyjo
A0003525,

Background / Introduction: ® |

What is the GMRES polynomial?

How do we implement the polynomial?

Why does the polynomial work for preconditioning?
Introductory Examples

3 | Generalized Minimum RESidual Method: GMRES

Algorithm GMRES (Modified Gram-Schmidt) [Saad, Schultz '86]
1: v =||b|l2and vy = b/~
2: forj=1:mdo
3: w; = AVj
4 fori=1:jdo
5 hﬂ' = V;Wj
6: Wi =Ww; — h,-jv,-
7
8

Build Krylov

end for Orthonormalize
Subspace

hj+1,j _ ”WjHQ- basis vectors

9 Vip1 = Wj/hjy

10: end for

11: Define the (m + 1) x m matrix H = {h;;} Project to find

12: Solve least-squares problem Hd = ~ye; for d. ;“;PJ?O“nm residual
13: X = Vpd

Add restarting when needed.

4

Previous Works on Polynomial Preconditioning....

Lanczos 1952; Stieffel 1958; Rutishauser 1959; Saad 1984,
1987; Ashby 1987; Smolarski, Saylor 1988; Fischer, Reichel
1988; O’Leary 1991; Ashby, Manteuffel, Otto 1992; van Gijzen
1995;

Liang, Weston, Szularz 2002; Liang 2005; Thornquist 2006;

Liang, Szularz, Yang 2013; Zhang, Zhang 2013; Liu, Morgan,
Wilcox 2015; Li, Xi, Vecharynski, Yang, Saad 2016; Zhang,
Huang, Sun 2017; Bergamaschi, Calomardo 2020; Loe,
Thornquist, Boman 2020; Ye, Xi, Saad 2021; Embree, Loe,
Morgan 2021, Loe, Morgan 2021;

And many, many more!!

The GMRES Polynomial ® |
x € K(A,b) = span{b,Ab,A%b, ..., A" b}
Sox = p(A)b.
Thenr=b — Ax = b — Ap(A)b = (I — Ap(A))b.
So as ||b — Ax||2 — 0, we get that ||/ — Ap(A)||z — 0.

X becomes a better solution as deg(p(A) increases

So Ap(A) — land p(A) — A~ asdeg(p(A)) increases.

Note: Others have used the GMRES Polynomial, just not for preconditioning linear systems!
(See Nachtigal, Reichel, Trefethen, “Hybrid GMRES...” 1992 and Thornquist Thesis 2006,
Rice Univ.)

6

Implementing the Polynomial Preconditioner

Ap(A)y = b,

[See: Toward Efficient Polynomial Preconditioning for GMRES, J. Loe and R. Morgan,
Numerical Linear Algebra with Applications, December 2021.]

7 | Generating the polynomial preconditioner:
p(A) has degree d-1; Ap(A) has degree d

1. Run one cycle of GMRES(d) using a random starting vector.

2. Find the harmonic Ritz values 61, ..., 84, which are the roots of
the GMRES polynomial:
With Arnoldi decomposition AV, = Via+1Hd+1 4, find the
eigenvalues of H, ;, + h7, | 4fe], where f = H ’e, with

elementary coordinate vector ey = [0,...,0,1]".

. Order the GMRES roots with modified Leja ordering [Bai, Hu,
Reichel]
(This ordering uses products of absolute values of differences of
roots.)

8

Eigenvalues of

Ap(A)

Remapping Eigenvalues (Symmetric Matrix)

deg(Ap(A)) = 4

Eigenvalues of

Remapping Eigenvalues (Nonsymmetric- €e20r0100)

Evals of A Evals of Ap(A) for deg(p(A))=5

* %
#* ok ok ok OFk ok ok Kk kkk

10

A first example:

Matrix: cfd2
n=123,440
b = random
GMRES(50)
32 MPI ranks

No preconditioning:
113.8s, 171541 iters

m
©
c
4]
wn
S
O
=
cC
)
—
=
n
>
=
o
wn
Py
L
]
S
|_
(0]
=
(@)
w

—h —
» (00 o N

I

20 30 40 50 60 70 80
Polynomial Degree

Degree 80 polynomial gives 57X
speedup over no preconditioning,

with over 14X reduction in SpMVs.

11

Polynomial Properties

Choosing the starting vector for the polynomial
Composing with other Preconditioners

Double Preconditioning

Added Roots for Stability

Vs other forms of GMRES (FGMRES or GMRES non-
restarted)

12 . Why pick a random starting vector for the polynomial?

Prob b = right-hand
side given with
problem

Rand b = randomly

generated rhs ! ’ PP R TTIR

Polynomials have
degree 15 (before
added roots.)

—4%—Rand b

—— No Poly Prec
Prob b

—— Prob b +4 roots

Matrix: Memplus
GMRES(50)

(K

Choosing Polynomial Starting Vector

Poly from random b
degree 15

Y
o
(7))
()

=
©
>
c
)

D

LUl

Poly from problem b
degree 15

14 | Other flavors of Polynomial Preconditioning:

Polynomial Preconditioning for Eigenvalue Problems

[Polynomial Preconditioned Arnoldi with Stability Control, J. Loe, M. Embree and R.
Morgan, SIAM Journal on Scientific Computing, Vol. 43, No. 1, pp. A1-A25, 2021.]

Compose with other preconditioners!

AMp(AM)y = b,

r = Mp(AM)y.

[More examples in: Polynomial Preconditioned GMRES in Trilinos: Practical
Considerations for High-Performance Computing, J. Loe, H. Thornquist and E. Boman,
Proceedings of the 2020 SIAM Conference on Parallel Processing for Scientific
Computing, pp. 35-45, 2020.]

15

Polynomial Preconditioning to Accelerate |ILU:

Matrix lll Stokes.

ILU(0.001) is computed from the shifted matrix A +
0.001/

do producis

No Standard Preconditioning

With ILU Preconditioning

WU P
LTS [4o [260.10°] 12710

100+10| 2 | 7691 | 21273 | 6668 | 148sec’s

16 | lmprovements for Biharmonic

2D Biharmonic matrix with n = 40,000

degree cycles mu Vops dot products
d sands) | (thousands) | (thousands)
229,740 11,487 643,729 304,404 14.6 hours

2,812 33,766 14,903 I.14 hours
T30 | 4159 | 207 5,500 | 31.6 minutes
47
11
4 =4
1

_ 489 260 4.89 minutes
_ 235 137 2.29 minutes
200 | 11 | 105 33.9 4.9 seconds
_ 73.7 85.1 47.9 seconds
_ 41.7 688 322 .33 minutes

10 ;
25 927 2,969 983 0.4 minutes
50 :

17

Double polynomial preconditioning!

With No Preconditioning:
14.6 hours!!
(Matlab on CPU)

Table 5.1: Biharmonic matrix with n = 40, 000.

time

100 = 10 10 5.29 minutes
225 =15 x 15 41 0 3.00 minutes

400 = 20 x 20 1['1 2 1.26 minutes
900 = 30 x 30 19.5 seconds
1600 = 40 x 40 - 35.8 seconds
2500 = 50 x 50 36.6 seconds
3600 = 60 x 60 38.3 seconds

Allows high-degree polynomials with less basis vector
storage and fewer dot products.

® |

18 | Polynomial Preconditioning vs FGMRES vs Adaptive
Polynomials

Why not just use FGMRES with GMRES as the preconditioner?

What happens if we update the polynomial at each GMRES
restart”?

Fixed polynomial (deg(Ap(A) = d) throughout GMRES. [PP-G]

FGMRES with GMRES(d) as the preconditioner at each iteration.

[FG]

Polynomial preconditioned GMRES, but get a new polynomial
(deg(Ap(A) = d) at each restart based upon the most recent
residual. [ChPoly]

19 | Polynomial Preconditioning vs FGMRES vs Adaptive
Polynomials

Table 5.1: Comparison with different degree polynomials between PP-GMRES (PP-
G), FGMRES (FG) and PP-GMRES with polynomial changing for each cycle (Ch-

-2

Poly). GMRES(50) is used for all tests. The matrix is diagonal with entries - and
with n = 10,000.

PP-G FG ChPoly PP-G FG ChPoly
degree mups mups mups time time time
(thousands) | (thou's) | (thou's) || (seconds) | (sec’s) | (sec’s)

2765 2468 o580 006 1166 191
2798 1064 335 907 472 G4.0
1213 (93 293 168 454 32.7
293 383 365 39.6 386 36.7
322 209 550 18.4 367 61.5
223 155 G306 12.0 389 889
202 76.4 747 11.3 253 125
95.4 82.5 626 : 338 128

Polynomial Preconditioning vs FGMRES vs Adaptive
Pol

nomials

Table 5.1: Comparison with different degree polynomials between PP-GMRES (PP-
G), FGMRES (FG) and PP-GMRES with polynomial changing for each cycle (Ch-

Poly). GMRES(50) is used for all tests. The matrix is diagonal with entries >

with n = 10,000,

-

degree

PP-G
mups
(thousands)

FG
mups
(thou's)

ChPoly
mups

(thou's)

PP-G
time
(seconds)

FG
time
(sec’s)

ChPoly
time
(sec’s)

2765

2468

o580

006

1166

191

2798

1064

335

907

472

G4.0

1213

(023

293

168

454

32.7

293

383

365

39.6

386

36.7

322

209

550

18.4

367

G1.5

223

155

636

12.0)

389

589

202

76.4

747

11.3

253

125

95.4

82.5

626

338

128

and

21

Unstable Polynomials?!?

What happens when

one of the theta i is

much bigger than the
others??

i
pof(5) = || 11— 6,/8i;

i#]

Derivative of the
polynomial gets too
big!!

' (85)] = pofl5)/]8;].

22 | Root Adding
Example

i

pof(j) =[] 11— 6;/8.l:
i=1
i#]

T (8;)] = pof(7)/|6;).

¥ eigenvalues
O harmonic Ritz values, d=10

M

@

Imaginary Part
o

n

3] 8
Real Part

10°° '

© ResNoStab
' * MaxPof
10'°] B Reswstab

L -
mﬂ*

10!

12
Degree of Original Polynomial

Fig. 3.2: The top half has the spectrum of OLM1000 after ILU(0) preconditioning
and has the roots of the GMRES polynomial of degree 10. The bottom half gives
the residual norm at the end of solving the linear equations with PP-GMRES first
without stability control (circles) then with control (squares). The maximum pof
values are also given (stars).

23 | Root Adding 107
Example — ;d=1ﬂ,noladdedrm;t$

m—— double root at 16.305
=== = = {riple root at 16.305

B
=Y
5 -
=
G
o
=
8

Fig. 3.3: Graph of the degree 10 GMRES polynomial for the OLM1000 matrix with
ILU(0) preconditioning (dashed line), then the polynomial with one root added at
16.305 (solid line) and finally with two added roots at 16.305 (dash-dot line).

2« | Root Adding
Example

i

pof(j) =[] 11— 6;/8.l:
i=1
i#]

7' (8;)] = pof(5)/18;].

eigenvalues
harmonic Ritz values, d=10

M

@

Imaginary Part
o

n

3] 8
Real Part

1020 '

, © ResNoStab
1 * MaxPof
101 B Reswstab -
— —x

109

107!

12
Degree of Original Polynomial

Fig. 3.2: The top half has the spectrum of OLM1000 after ILU(0) preconditioning
and has the roots of the GMRES polynomial of degree 10. The bottom half gives
the residual norm at the end of solving the linear equations with PP-GMRES first
without stability control (circles) then with control (squares). The maximum pof
values are also given (stars).

25 Polynomial Preconditioning Extensions for ® |
Large-Scale Computing |

Mixed Precision

“Weak” Scaling

Communication — Avoiding for MPI

Usefulness for GPUs -

26 | Scaling: Fix Polynomial Degree and Refine the Mesh?

Iters to Convergence BentPipe2D Iters to Convergence BentPipe2D

REEEEEE

Number of lters

wn
s
(]
=
Y—
(@]
—
]
O
£
3
=z

252

”M x
[f (Zoom of graph on

left.)

500 1000 1500 2000 2500 3000 3500 4000 500 1000 1500 2000 2500 3000 3500 4000
NX NX

27

Scaling: Increase Polynomial Degree wrt Matrix Size

Iters and SpMVs for Poly Deg Scaled with Matrix Dim
Laplace3D

HSpiveyrs

Iters and SpMVs for Poly Deg Scaled with Matrix Dim
UniFlow2D

+—t—tt ;
—_—t— ites

75 100 125 150 175 200
nx

40 60
Poly Degree = nx/2.0

100 150
Poly Degree = nx/10.0

26 | Potential for Polynomial Preconditioning on GPUs: ® |

Very Parallelizable

Unlike, say, ILU. (Triangular solves need level sets; might not be able
to extract parallelism.)

Straightforward to code for GPUs
Need axpy and SpMV.
Easier to port than, say, multigrid. :

Great for Matrix-Free problems!

29 Bridging the gap between Polynomial
Preconditioning and Applications:

Simplify software interface in Trilinos (Belos linear solvers package).

One-size-fits-all or automated degree selection.
Possible application- as currently run with ILUKk(1):

Ex mini application: 10-20 timesteps, each with nonlinear solve x
2-10 linear solves = 20 to 200 linear solves!
(10 to 300+ iterations each; can’'t use same degree polynomial.)

Full size application = 1000x larger!

Better guarantees for problems with indefinite spectrum

(Work in progress.) .. .

I SiINOS

Build communication with application teams!

Takeaway points: @ |

Polynomial Preconditioning with the GMRES polynomial is power for linear

systems and eigenvalue problems! |
Can accelerate existing preconditioners.
Automated root-adding for stability.
Reliably generate high-degree polynomials.

30

Competitive with FGMRES and with non-restarted Krylov methods
Reduced orthogonalization costs and basis storage costs!
May be useful for MPl communication avoiding.

Paving a Path toward Parallel Computing:
Easily ported to GPU code.
Straightforward to parallelize on GPU.
Mixed-precision advantages

Applying to Real-Life Problems: :
Make reliable for indefinite problems.
Simplify software and parameters.
Communicate with applications teams!

Thank you!

