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Background / Introduction:

What is the GMRES polynomial?
 How do we implement the polynomial?
 Why does the polynomial work for preconditioning?
 Introductory Examples
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Generalized Minimum RESidual Method: GMRES3

Orthonormalize 
basis vectors

Build Krylov 
Subspace

Project to find 
minimum residual 
solution

[Saad, Schultz ’86]

Add restarting when needed. 



Previous Works on Polynomial Preconditioning….4

Lanczos 1952; Stieffel 1958; Rutishauser 1959; Saad 1984, 
1987; Ashby 1987; Smolarski, Saylor 1988; Fischer, Reichel 

1988; O’Leary 1991;  Ashby, Manteuffel, Otto 1992; van Gijzen 
1995; 

Liang, Weston, Szularz 2002; Liang 2005; Thornquist 2006;
Liang, Szularz, Yang 2013; Zhang, Zhang 2013; Liu, Morgan, 
Wilcox 2015; Li, Xi, Vecharynski, Yang, Saad 2016; Zhang, 

Huang, Sun 2017; Bergamaschi, Calomardo 2020; Loe, 
Thornquist, Boman 2020; Ye, Xi, Saad 2021; Embree, Loe, 

Morgan 2021; Loe, Morgan 2021; 
And many, many more!!



The GMRES Polynomial5

Note: Others have used the GMRES Polynomial, just not for preconditioning linear systems!
(See Nachtigal, Reichel, Trefethen, “Hybrid GMRES…” 1992 and Thornquist Thesis 2006, 

Rice Univ.)



Implementing the Polynomial Preconditioner6

[See: Toward Efficient Polynomial Preconditioning for GMRES, J. Loe and R. Morgan, 
Numerical Linear Algebra with Applications, December 2021.]



Generating the polynomial preconditioner:
p(A) has degree d-1;    Ap(A) has degree d
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Remapping Eigenvalues (Symmetric Matrix)8
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deg(Ap(A)) = 4 deg(Ap(A)) = 8



Remapping Eigenvalues (Nonsymmetric- e20r0100)9

Eigenvalues of 
A

Eigenvalues of 
Ap(A)

deg(Ap(A)) = 6



A first example:

 Matrix: cfd2
n = 123,440
b = random
GMRES(50)
32 MPI ranks

 No preconditioning:
113.8s,  171541 iters
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 Degree 80 polynomial gives 57x 
speedup over no preconditioning, 
with over 14x reduction in SpMVs.



Polynomial Properties

Choosing the starting vector for the polynomial
Composing with other Preconditioners
Double Preconditioning
Added Roots for Stability
Vs other forms of GMRES (FGMRES or GMRES non-
restarted)
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Why pick a random starting vector for the polynomial?12

 Matrix: Memplus
GMRES(50)

 Prob b = right-hand 
side given with 
problem
Rand b = randomly 
generated rhs

Polynomials have 
degree 15 (before 
added roots.) 



Choosing Polynomial Starting Vector13
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Other flavors of Polynomial Preconditioning:

Polynomial Preconditioning for Eigenvalue Problems
[Polynomial Preconditioned Arnoldi with Stability Control, J. Loe, M. Embree and R. 
Morgan, SIAM Journal on Scientific Computing, Vol. 43, No. 1, pp. A1-A25, 2021. ]

Compose with other preconditioners!

[More examples in:  Polynomial Preconditioned GMRES in Trilinos: Practical 
Considerations for High-Performance Computing, J. Loe, H. Thornquist and E. Boman, 
Proceedings of the 2020 SIAM Conference on Parallel Processing for Scientific 
Computing, pp. 35-45, 2020. ]
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Polynomial Preconditioning to Accelerate ILU:15

Matrix Ill Stokes.
ILU(0.001) is computed from the shifted matrix  A + 
0.001I



Improvements for Biharmonic

 2D Biharmonic matrix with n = 40,000
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Double polynomial preconditioning!

 Allows high-degree polynomials with less basis vector 
storage and fewer dot products. 
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 With No Preconditioning: 
14.6 hours!! 

(Matlab on CPU)



Why not just use FGMRES with GMRES as the preconditioner?
What happens if we update the polynomial at each GMRES 
restart?

18 Polynomial Preconditioning vs FGMRES vs Adaptive 
Polynomials

1. Fixed polynomial (deg(Ap(A) = d) throughout GMRES.  [PP-G]
2. FGMRES with GMRES(d) as the preconditioner at each iteration. 

[FG]
3. Polynomial preconditioned GMRES, but get a new polynomial 

(deg(Ap(A) = d) at each restart based upon the most recent 
residual. [ChPoly]



Polynomial Preconditioning vs FGMRES vs Adaptive 
Polynomials
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20 Polynomial Preconditioning vs FGMRES vs Adaptive 
Polynomials



Unstable Polynomials?!?21

What happens when 
one of the theta_i is 

much bigger than the 
others??

Derivative of the 
polynomial gets too 

big!!



Root Adding 
Example
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23 Root Adding 
Example



24 Root Adding 
Example



Polynomial Preconditioning Extensions for 
Large-Scale Computing

Mixed Precision
“Weak” Scaling
Communication – Avoiding for MPI
Usefulness for GPUs
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Scaling: Fix Polynomial Degree and Refine the Mesh? 26

(Zoom of graph on 
left.)



Scaling: Increase Polynomial Degree wrt Matrix Size27



Potential for Polynomial Preconditioning on GPUs:

Very Parallelizable
Unlike, say, ILU. (Triangular solves need level sets; might not be able 

to extract parallelism.)

Straightforward to code for GPUs
Need axpy and SpMV.
Easier to port than, say, multigrid.

Great for Matrix-Free problems!
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Bridging the gap between Polynomial 
Preconditioning and Applications:

Simplify software interface in Trilinos (Belos linear solvers package).
One-size-fits-all or automated degree selection.  
Possible application- as currently run with ILUk(1):
Ex mini application: 10-20 timesteps, each with nonlinear solve x 
2-10 linear solves = 20 to 200 linear solves! 
(10 to 300+ iterations each; can’t use same degree polynomial.)

Full size application = 1000x larger!
Better guarantees for problems with indefinite spectrum. 
(Work in progress.)
Build communication with application teams!
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Takeaway points:
Polynomial Preconditioning with the GMRES polynomial is power for linear 
systems and eigenvalue problems!
 Can accelerate existing preconditioners.
 Automated root-adding for stability.
 Reliably generate high-degree polynomials.

Competitive with FGMRES and with non-restarted Krylov methods
 Reduced orthogonalization costs and basis storage costs!
 May be useful for MPI communication avoiding.

Paving a Path toward Parallel Computing:
 Easily ported to GPU code.
 Straightforward to parallelize on GPU.
 Mixed-precision advantages

Applying to Real-Life Problems:
 Make reliable for indefinite problems.
 Simplify software and parameters.
 Communicate with applications teams!
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Thank you!
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