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Motivation:
Direct Ink Write (DIW) Silicone Lattice Structures Are Promising for
Modular Electronics Packaging

Aluminum Guiding Rods/Through Bolts

Protect Electronics in Harsh or Diverse Mechanical Environments:
« Wide range of preloads due to tolerance stack up errors

« Akey part to modular rigid foam packaging

* Reduce vibration and shock behavior to the electronics

Are we taking Full advantage of additive manufacturing with silicone polymer lattice structures?
Two important Questions?

« (Can we Design the DIW lattice structures to be optimal in multiple mechanical environments?

« How Robust are the DIW designs to printing defects and/or variations in tolerance stack up?
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Large Printing Design Space
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Design Space Can Be Much Larger

Different symmetry lattices

« Spatially dependent structure

Different Inks

[difficult to probe experimentally,

Such a large design space is

by trial and error

200
Roach, et al. Additive Manufacturing, 2021 ‘



Filament Filament \‘r N

diameter spacing

Scale

Lines found using

Hough lines

Machine Learned Regression
Map Printing Parameters to
Compressive Stress-Strain Response

DIW Printing

S

Detected by CV Algorithm
- —— As-Printed

Parameters

=
(=1
T

(]
[=1

(v

Number of Layers
=

s
L=

Artificial Neural Netwoﬂ(] b)  gasf
(ANN) Architecture = 030k - - - Neural Network] |

Hidden layer Output Layer % 0.25 *-

—)—> X w ]

A 9 0.20F

— X h b

’ @ 015}

E b

n =400 E 0.10 ‘

/' @ —vm  Z O]

] 0.00} .
‘ : X-y compression 4 6

curve values Compression Gap (mm)

20 60
FRS Number

A subset of the printing parameter space can be
successfully mapped to the mechanical compression
response of interest via fully experimental support

and machine learned regression

This approach works when the design space is limited

Roach, et al. Additive Manufacturing, 2021
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10H x 9W x 9L x 1Spacing

10H X 9W x 9L x 25Spacing

10H x 9W x 9L x 8Spacing

The matrix phase was modeled
with a Gent model calibratea
to Sylgard 184

No material tuning was
performed despite the DIW ink
being a different silicone
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At each objective function evaluation, the suite of deformations are sampled, and at each state, the material tangent is
computed, and many acoustic tensors are formed. If any acoustic tensor is found to have a zero or negative eigenvalue, a
substantial penalty is added to the objective function

The same material-stability* checked optimization procedure is used to fit experimental and simulated
compression curves from individual lattice structures.
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// Modeling a Defective AM Lattice Structure—Consider Thinning of
the filaments by 2% with each subsequent printed layer (in height)

/ Uniform Layers




Mechanics and
Structural Dynamics

of a Typical Preloaded
Assemblies




/" Consider a Model Structure with an essential DIW pad
4

rd

‘4
= Double sandwich consists of the following layers

. . Bolt head
= Aluminum plates on outside Rigid Foam Blocks
= DIW pad on inner side of each Al plate I
= 8 square modular foam pads in betweer Al Plate
= 4 bolts near each corner to preload the « , —
= Geometry details: DIW Pad ,,,/Raspb-erry P!

= 6" square Al plates
= 1.85" total thickness Al Plate

- 0.5"AlPlate Bolt shank I |

= 0.1" DIW Pad f

= 0.2” Modular Foam Y ¥

= 0.25" Raspberry Pi

Goal:

Understand how our choice of DIW silicone lattices affects the preloading and steady state
vibration response of the assembly and in particular on specific locations of the Rasberry Pi




Structural Assembly/Preload

What is the role of the lattice structure response with the same preload displacement
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o DNS_10Layer 2x
S 2000+ DNS_10Layer 2x_2pctthinning
E
1000 -
04 Layer “Thinning” Reduces Preload

—0.08 —0.06 —0.04 ~0.02 0.00
Artificial Log Strain in the Bolts

Final State at a Gap Closure of 0.012 inches.
« Notice the Red DIW Lattice Material “pulling away” from the Aluminum Plates
 Notice the significant preload response between the DNS and the defective DNS (with thinning) Cases




Modal Response of the Structure About the Undeformed State
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Modal Response of the Structure About the Deformed (about 53%
4 Nominal Compression) State

,DE1T Layer 09X (FullContacl)  DE 8 | ayer 0.9 (Partial Contact)
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/" Frequency Response Comparison at the Top-Center of the Rasberry Pi
53% Deformed DIW Lattices

Undeformed
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/" Frequency Response Comparison at the Top-Center of the Rasberry Pi

Undeformed :
d 53% Deformed DIW Lattices
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/" Summary and Closing Remarks

,/ Summary

/ 1. A 5-stage multi-scale workflow compatible with simulated or experimental
characterization of DIW Lattice Structures used in electronics packaging mechanical
environments was developed

2. Preload, Modal, and FRF behavior was found to strongly depend on pad parameters

3. Defects in pad printing significantly affected the preload and modal response of the
structure

4. Contactis very important and must be carefully monitored as it substantially changed the
model content of the preloaded structures

Outlook

1. Results suggest we can design pads to design the preload, vibration, and transient
impulse responses of pads

2. Viscoelasticity should be included




Questions

Kevin Long
knlong@sandia.gov




/7 Explicit Dynamics Strain Rate Study
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/ Lattice Size (Number of Cells In Each Lateral Direction)
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