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[Abstract] The near wake flow field associated with hypersonic blunt bodies is characterized by complex physical
phenomena resulting in both steady and time dependent pressure loadings on the base of the vehicle. Here, we
focus on the unsteady fluid dynamic pressure fluctuation behavior as a vibratory input loading. Typically, these
flows are characterized by a locally low-pressure, separated flow region with an unsteady formation of vortical cells
thatarelocally produced and convected downstream into the far-field wake. This periodic production and transport
of vortical elements is very-well known from classical incompressible fluid mechanics and is usually termed as the
(Von) Karman vortex street. While traditionally discussed within the scope of incompressible flow, the periodic
vortex shedding phenomenon is known for compressible flows as well. To support vehicle vibratory loading design
computations, we examine a suite of analytical and high-fidelity computational models supported by dedicated
experimental measurements. While large scale simulation approaches offer very high-quality results, they are
impractical for design-level decisions, implying that analytically derived reduced order models are essential. The
major portions of this effort include an examination of the DeChant-Smith Power Spectral Density (PSD) [1] model
to better understand both overall Root Mean Square (RMS) magnitude and functional maximum associated with a
critical vortex shedding phenomenon. The critical frequency is examined using computational, experimentsand an
analytical shear layer frequency model. Finally, the PSD magnitude maximum is studied using a theory-based
approach connecting the PSD to the spatial correlation that strongly supports the DeChant-Smith PSD model
behavior. These results combine to demonstrate that the current employed PSD models provide plausible reduced
order closures forturbulent base pressure fluctuations forhigh Reynolds numberflows over range of Mach numbers.
Access to a reliable base pressure fluctuation modelthen permits simulation of bluff body vibratory input.

Nomenclature
A = localconstant
¢ = constant(locally defined)
¢ = adampingconstant
Cp= bodydragcoefficient
d,D = basediameter

f = frequency

vortex layer thickness

M.= edge Machnumber

P = pressure

edge dynamic pressure

ro - basediameter

Re = Reynolds number

dimensionless vortex shedding frequency
dimensionless vortex shedding frquency
streamwise mean velocity

free stream

local constant

Clauser constant=0.016

a dampingconstant estimated as 0.05 (additionaldevelopment subsequently).
edge dynamic pressure
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a,f= parameters

A = wavelength

o = dimensionless angularfrequency
0 = coneangle

Subscripts/superscripts

0 = constant

b = base

e = edge

mag = magnitude

rms = rootmeansquare

1. Introduction

ase pressure fluctuation and mean base pressure behavioris animportant physicalbehaviorassociated with the

near wake for blunt base geometries. Typically, these flows are characterized by a locally low-pressure,

separated flow region with an unsteady formation of vortical cells that are locally produced and convected
downstream into the far-field wake. This periodic production and transport of vortical elements is very -well known
from classical incompressible fluid mechanics and is usually termed as the (von) Karman vortex street. While
traditionally discussed within the scope of incompressible flow, the periodic vortex shedding phenomenon is known
for compressible flows aswell.

u-velocity

Figure 1. Base flow behaviorfora bluff body using high fidelity LES simulations fora Mach 2.46 63.5 mm
diameterafterbody

The unsteady periodic shedding behaviorinduces a flow-induced time dependent frequency. Coupling between the
flow velocity field and the induced pressure through momentum conservation forms the basis for unsteady pressure
loading associated with the bluffbody base. Estimation ofthis loading is the focus of this discussion.

Base pressure fluctuation loading is typically describe using the frequency space auto-spectral density (ASD), or
power spectral density (PSD), which inherently contains both spectral and magnitude information. DeChant and
Smith [1] describe such a formulation where magnitude information and dominant frequency results are related to
previous efforts such as Ahlborn [2] and Shvets [3]. The derivation of this model relies on an approximate unsteady
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vortex flow approach. This model has been successfully used for a wide range of loading simulation efforts where
base pressure fluctuation effects play a relatively limited role. The overall structure of the PSD function is
consistent with experience, however, for some body geometries and flow conditions the DeChant and Smith model
requires additionalverification to be of value as pertaining to the supporting quantities:

1. Critical/dominant fluctuation frequency
2. Loading amplification nearthe dominant frequency due to dampingin current formulation
3. Root- mean square (RMS)/PSD magnitude.

We start by describing the basic DeChant/Smith PSD model paying particular attention to the role of the critical
frequency and the amplification of the PSD atthis frequency. Physics-based critical frequency modelestimates are
examined and compared to both high fidelity simulation results and experimental measurements. Finally, the PSD
magnitude closure is examined in detail. The net result of this discussion is to examine the essential components of
the PSD model in light of physics-based processes.

II. Analytical Models: Development and Comparison to Representative Data Sets

Here we start by examining the base pressure fluctuation model[1].

(1) Base Pressure Fluctuation: DeChant-Smith (2011)
Base pressure fluctuations are approximately described by a simple modeldevelopedin [1]. The majorresult of the
model is an estimate for the base pressure fluctuation is the base pressure fluctuation PSD (i.e. ASD). The result is
a spatial average across the base of the body and is thereby not spatially dependent. Similarly, spatial coherence

information playsno role in this formulation.

Following [1], we describe this modelas:

(a2 +c2+a)2)

Py (@)= P (a2+c2—2aa)+a)2)(a2+cz+2aa)+a)2) M

Where we define the expressions:

_(1535,0+C)) .
27°C,)
_ D (1.75(2)(K)aq,)’
U (1+M,)"

This formulation is described in detail in [1], but we include a typical result in Figure 2 which compares low speed
measurements to the associated theory.
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Figure 2. Typical base pressure PSD result emphasizing the relative importance of the critical frequency location at
the maximum of the PSD magnitude.

We emphasize that the maximum PSD magnitude is associated with the critical frequency that is denoted by the
1
K(1+C,)

2
ANK
Re

Strouhal number. The Strouhal number can be empirically estimated by the expression: St =

T
C,+

where the empirical constantsare K=1.53 and Re =4NK .

While we have access to the critical Strouhal number via this semi-empirical closure, there is obvious value in
understanding the “provenance” and limitations of this type of result by examining the physics of this problem by
surveying and developing Strouhal number models. Further, the PSD magnitude increase associated with the
critical frequency is largely driven by the magnitude of the damping term in “c” in equation (1), implying that
justification for the estimated value described previously is necessary. Finally, the magnitude behavior of the PSD
needs to be understood, especially, for compressible high-speed flow regimes.

(2) Critical Strouhal Number

To get a general sense of the efficacy of the previous (critical) vortex shedding Strouhal number models, let’s
examine several typical problems. Perhaps the simplest result is to estimate the cone vortex shedding frequency

L kasc,) L ka+c)
using the aforementioned Ahlborn model: [2] St = 8 = 2z which can be
4NK C
C,+ D
Re
1
27[2K(1+CD)

approximated by: St = for large Reynolds numbers. Obviously, a key feature of this result is to
D

estimate the associated drag coefficient since it represents the main connection between flow geometry and

associated shedding frequency. The physics of this connection to the drag is perhaps not particularly clear, but a

discussion described in Appendix I connects classical low speed concepts to the current approach. To apply, the

current model to estimate the Strouhalnumber, we examine drag for conical bodies.
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Drag coefficients for cones and cylindrical after bodies may vary considerably, but measurements [4] provide
estimates that suggest: cone drag can be on the order of C4=0.9. We wam, however, that this value is large for a
drag coefficient, which may be attributable to the rarefied conditions for these measure ments.

We can plot the Strouhal numberasa function of the drag coefficientasdepicted in Figure 3. As indicated, we note
that hypersonic cone drag estimates tend to suggest that drag coefficients may be much smaller than described
previous with Cp=0.1-0.2.  This smaller value is in accord with the very simple expression for cone drag:

C, =0.01126, ,, +0.162 [5] suggesting thatwe could write:
e Cp(0. 4, =5=022—>8t=0.43
o Cp(0, 4 =10)=0.27 > 5t =0.36

Notice thatthese Strouhal numbers are seemingly large ascompared to a more common result with St=0.25 thatwas
described in [1].

0.224
0.207

0.18+

St

Q.16+

0.14+

0.124

05 1 15 2
cd

Figure 3. Strouhalnumberas function of body drag via Ahlborn model [2]. Notice thatdragwill need to be large
for reasonable shedding frequencies.

1
27

K(1+C))

2

We need to examine the efficacy of the Ahlborn [2] e.g., St = . This model was developed for
D

typically large blunt body problems at lower speeds. A modelthat is more appropriate for high-speed flow (based

on Mach 14 experiments for cones 15 deg and spherical bodies) is described by [6]. The result of their effort is to

derive an expression for the Strouhal numberas:

1/2
st, =29 022001829 4_ (CDAJ
U Re, 27

@

Now, more meaningfully, we can estimate that: << 1so that we can write (for an axisymmetric base

Re,
problem):

St,, = D g (0.22)C,"* 3)
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Which plotted gives:
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Figure 4. Comparison between Goldburg-Washburn [6] Strouhal numberand Ahlborn model for Strouhal number.
We propose that the Goldburg and Washbun [6] is likely more appropriate.

Using the [6]expression for our estimates of Cp

e Cp(0, 4, =5)=022—>5t=0.16
e C,=09—5=0.082

Clearly, there is rather considerable variation associated with the appropriate drag coefficient for conical bodies.
Estimates from measurements are, of course, useful. Krasilshchikov et. al. [7] estimates hypersonic drag coefficients
(15 deg cone) on the order of Cp=0.2. Pick et. al. [8] suggests CD=0.1 for M=6 (10 deg) sharp cone.

(a) High Fidelity Simulation versus Janssen and Dutton [9]; Kirchner et. al. [10]

Let’s then in turn examine measured afterbody pressure behavior as described in the literature with associated high-
fidelity simulations.  Consider the experiment by [9] who consider a Mach 2.46 flow past a 63.5 mm diameter
cylinder. An estimate for dominant behavior is St=0.094. Flow conditions yield U=569 m/s implying that:

U 569
f=85t—=——--(0.094)=842Hz. Examination of the simulation data (pre-multiplied spectra f*PSD)

D 0.0635
suggest that f=1000Hz signifying that the pre-multiplied spectra bias the peak estimate. Note that measurements
[11] provide estimates for base pressure fluctuation for a blunt body. Their results indicate that the Strouhal
numbercanreadily be less than0.1.

The base pressure Strouhal models need access to drag coefficient Cp; let’s examine estimates for the Janssen and
Dutton experiment. We have relatively little information for this problem in terms of the total drag since we do not
readily have information for the upstream body. For some problems, the drag coefficient is dominated by the base
drag (low pressure zone in the body base region). Obviously, a significant part of our effort has been to estimate
the base pressure behavior for hypersonic bodies. Fortunately, the base pressure ratio described by equation (2) is

directly related to the base pressure ratio via the base pressure coefficient as: CDibase = —Cpibm . This, can in

turn, be related to the base pressure ratio Ly using:

P
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Using reasonable estimates for the Reynolds number (Unit Reynolds number is SE7/m) as with Res=2E6 and
modeling the problem as 5-degree cone ( Me ~M ). The result is presented below where the single

measurement follows from a similar supersonic wake simulated using high fidelity methods (LES) i.e. Kirchner and
Dutton [9]. Theory-based estimates are possible (see Appendix II) for the base pressure ratio and are presented in
Figure 5.

We can use equation (4) to then estimate the base drag for this experiment as:

CDibm = —2(1 - (0.5)) =0.12. Corresponding Strouhal numbers for this value are 0.72 and 0.22, [2],
7(2.46)

respectively. Obviously, these values are probably much too large; suggesting that the drag coefficient is too small

since a larger value for the base drag will imply a smaller value for the Strouhal number and better agreement with

the data sets.

The largest plausible (possible) drag coefficient is C¢=0(2) implying that St=0.115 using the Ahlborn approach.
The Goldburg values would imply St=0.055. However, this value is usually fora 2-d shape e.g., elongate bar and
would be seemingly much too large. A more useful estimate would be for an elongated cylinder aligned with the
flow, as discussed by [12]. Notice, however, if we use the Goldburg et. al. model for Cp=0.4-0.5, [12] we would

U 569
yield St=0.078-0.12 whereby: f = St—= (0.078—-0.12) =985—-1075Hz, seemingly bounding the
D 0.0635
base pressure frequency.
O LES Stack
— Turbulent Res=2.e6, 5 deg cone DeChant-Wagnild
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Figure 5. Comparison between base pressure modeland LES simulation for [9],[10] base flow problem.

High fidelity simulations (LES) have been performed for a similar problem [10]. A typical PSD result is shown for

U 569
the centerline value as St=0.09. Application of this value gives: [ = StB = m(o.o% =806 Hz , which is

in excellent agreement with measurement.
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Figure 6. Base pressure fluctuation model forKirchner Dutton [10] experiment. Notice the shift in the peak
frequency between the two approaches.
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Figure 7. Pressure fluctuation overbase of cylindrical body; Kirchner and Dutton [10]).

The PPSD is often utilized such that equal area under the PPSD function are correlated with equal power (p’2).
Nonetheless, notice aswell, the frequency shift between the PSD and PPSD or pre-multiplied PSD.

(b) Offset Sting Cone M=8 Measurements with Limited Bladed Mounted Cone Results

Dedicated (Sandia) experimental results have been performed to support the flow behavior associated with high-

speed conical base flow problems [13]. Examination of the current measurements yields U is on the order of

U=1160 m/s while the base diameter is 0.0762 m. The flow is a high-speed Mach 8§ condition. Measurements

suggest that there is a lower frequency peak associated with this flow at approximately 700 Hz. This frequency
/D (700)(0.077)

implies that the Strouhal number should be on the order of St = 7 T =0.046. Thisis a

smaller Strouhal number than we might expect for the cone problem and via the expression:
D 2
St, =+=~Z
U 4
for Strouhal number would have required a value for Cp=2.9 which is impossibly large. If we used a drag value of
say 0.2 in the [6] expressions

(().ZZ)CE)U2 requires a large value for cone drag coefficient. Indeed, using the current model
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Figure 8. HWT Mach 8 offset sting pre-multiplied spectrum [13] for 5 deg cone; suggesting a peak at 700Hz.

While our analysis does not seem capable of estimating sufficiently low frequency (small Strouhal number)
behavior, small values are known. Indeed, [3] mentions that the frequency of base shedding decreases with Mach
number. He provides a graph which demonstrates this behavior. Notice for that for low supersonic Mach number,
increasing Mach number implies reduction in Strouhal number. However, this reduction is limited for high Mach
number. While useful, we need to be careful since this expression is likely associated with the premulitiplied
frequency.

Fic. 23. Position of the maximum in the spectrum of the
base pressure fluctuations for a cylinder with a conical
nose (D = 60 mm, L = 250 mm).

Figure 9. Reduction in peak frequency asa function of Mach number; following [3].

An experimental and computational study that exhibits low frequency peaks is described by Saile et. al. [14]. Their
study for a blunt coned cylindrical body with an axisymmetric extension in the base (not a sting mount,butanozzle
model) suggest that the relatively large diameter (40% of the diameter) impacts the associate base spectra by
lowering the Strouhal numberto be on the order of 0.025-0.03

(¢) Shear Layer Fluctuation Behavior

Lower frequency behavior in the wake zone can be difficult to reconcile with the vortex shedding behavior
described previously. There are, however, lower frequency unsteady behaviors that are associated with the Kelvin -
Helmholtz behavior associated with the wake/recirculation shear zone behavior. Let’s examine these results using
some simple theoretical estimates for the behavior. The Kelvin-Helmholtz instability is very well known, and we
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can use some of the classical (inviscid) theory to help us estimate the frequencies associated with the most critical
(fastest growing) disturbance.  Briefly, the governing equations [15] associated with inviscid flow (Rayleigh
equation)are simply:

&u
de ) dy2 B
@ e ®
k

Where f is related to the stream function (2-d) as: w = f(y)exp(i(kx—t)). Solution of equation (8) is

challenging, but simplifies considerably if we describe the u(y) with piecewise linear profile with appropriate
2

=(. Consider now

boundary condition connecting them f(L")=f(L") and (u-o/k)f’(L)=f(L)du/dy. Notice that >

dy
the linear profile given by:

+L | e

T S e e

-U

Figure 10. Piecewise linear profile representing wake/recirculation bubble interface [15].

2
. . . . a)
Using the previous expressions, we can compute an expression for ; =0 as:

, 1(UY 2
o :Z(fj ((I—ZkL) —exp(—4kL)) ©)

The fastest growing (most dangerous) growth rate/frequency ie., ® is computed via the derivative to give:

U
kL =0.398 ~ 0.4 whereby @ = 020(?] . To utilize this result, we need to make estimates forvalue of L. A

perhaps reasonable approach to estimate the shear layer width would be to delineate L=R/2=D/4 with Uw/2<U<U,

- 2 27 )
Recognition that kK = — — A = —— then gives:
A 0.4L
@
ok oo 0 0) 7
A 2z 2 L D @
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This expression suggests that low frequency/small Strouhal number behavior may indeed be possible for base flow
behavior. Here, we emphasize, that this low frequency behavioris not associated with the vortex shedding behavior
butis contained within the shearlayer model.

(3) Loading Amplification Near the Dominant Frequency Due to Damping

As describe by equation (1), [1] derived expressions for the base pressure fluctuation and proposed a PSD of the
form:

a’+ fr+ o’

(5 +(a+ ) ) B +(a-0)) ®)

D oc Tcos(ax) exp(—fx)cos(wx)dx =

Where o and B are parameters, o being the critical dimensionless wave number/Strouhal number described
previously. We have intentionally introduced a different notation to emphasize the general nature of the closure
approach. The damping term B (equivalent to “c” in equation (2) was estimated using some physical arguments
previously but is rather less well described and needs to be estimated for the local shear problem. Fortunately,
classical turbulent shear behavior is well-known in the literature and can be used to estimate pressure fluctuation
statistics.

Consider, the classical solution for a 2-d mixing layer with the mean flow behavior [16] written as:
1 y

u(x,y) =U, += (U, =U,)(1 +erf (o)) 9

2 x ©)

Where the constantcis a dimensional constant thatis O(1-10) dependingon our definition approach.
The most important associated result follows that we can write the Reynolds stress in the form

ou
u'v'ec (U, —Ul)xa— =, _U1)2 exp(—(o Z)z) or grossly approximating a pressure fluctuation
)4 X

magnitude: p'~ pu'u'oc p(U, —U,)’ eXp(—(Uz)z). Notice that we are using a simple ansatz relating
X

pressure fluctuation to velocity fluctuation p'~ pu'u'thatis common forisotropic turbulence [16].

Considering y>0 only we can approximate: p'~ exp(—2al) and then compute an estimate for the later
X

correlation Ry(dy) as:

R (Ay) = Iexp(—2a y)exp(—2o(y +Ay)) o< exp(—20Ay) 10)
0

Access to the cross-stream correlation then implies that we can pose the correlation-coherence constraint as:

R (y)=exp(-20y) = j D () exp(—Bwy)dw o
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Where, of course, « (ﬂ2 +(a +a))2)(ﬂ2 +(a _a))Z) ’exp(— @y) is the lateral coherence across the

base of the bluff body and C is a scaling constant.

Unfortunately, the resulting integral Iq)(w) exp(—Ba)y)da) is very complex and yields results that are not
0

amenable for further analysis. A simple functional analysis approximate is appropriate here. Consider the closure

(integral constraint) @ oc exp(—y@) where:

e @ PN B e
!eXp( 7w)dw_£(ﬂ2+(a+a))2)(,6’2+(a—a))2) @ 12)

2_p

To giVC y:;m

We arenow able to write the coherence constraint as:

2_ B

. m w)exp(—Bwy)dw =0

/(.. B,B,C) =exp(-20) - C [ exp(- 13)
0

which is a residual expression with several unknown parameters e.g., B, B and C (a is known) valid for 0<y<co.

We can compute estimates forthe unknown parameters by demandingsatisfaction of the residual. For example, by
evaluating f(y=0) the resulting algebraic expression gives:

_ 2 B
f(O,a,,B,B,C)—O—>C—ﬂ—(a2+ﬂ2) (14)

Of greater interest, however, is an estimate for. We compute this value by using the derivative constraint:

2 B 20 —\4o’ -1’ B’
0,0,,B,C==—F -0 p=
S O.a.p 7z(a2+ﬂ2)) d 7B (13)

Finally, we can estimate, the coherence constant B as:

20 —\4o’ -1’ B’ 2 y/;
"O,a,p,B = ,C=———-—)=0>B=+2
/' 0.a.p 7B 7 (a? +,6’2)) (16)

Thus, we can obtain estimates for parameters in preceding equations

We are most interested in the damping P since it is this term that dramatically influences the behavior of the PSD.
As such, we can consider in more detail the size of this term. Let’s then consider the expression for 3
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B 20 —\4do* —r*a’B? N \/572’ a_2
7B

4 o an

Thus, we can see that for small a that the damping term will be small Moreover, the PSD
. (@ +p)a’ + B +w)
(B +(a+0) ) B +(a-w))

critical frequency a only. Indeed,using this closure and with 6=1 we can plot the scaled PSD as:

is then no longer a function of two variables but is a function of the

|— e_crit=0.01 — - c_crit=0.1 — — co_crit=1

10—2_

10—4_

Normalized Basge Pressure PSD

10—6_

10 107 10?7 107t 1P 10t 10?
Dimensionless Frequency

Figure 11.Basepressure PSD for several critical frequencies demonstratingthe increase in magnitude nearthe
critical frequency.

Let’s examine more completely the results expressed here by considering the implications of the damping term
identified in equation (17) as it provides an estimate for the damping behavior. To use equation (17) we will need
an estimate for the turbulent spreading rate term o. Traditionally, for a mixing layer, c=13.5 [16], and smaller
values are used for jets ie., 0=7.7. However, compressible mixing is typically significantly suppressed as
compared to incompressible behavior. Moreover, the use of the mixing layer formulation is only an analogy for

wake flow. Indeed, the 2-D mixing layer expressed by equation (9) can be modified to provide a defect velocity
formulation as:

u(x,y)=1- er_‘f‘(o-gff'g)) (18)

Which canbe morereadily compared to the wake defect velocity as:

1
u(x,y) = GXP(—EGWkef ) (19)

Knowing the value for 0, we can estimate an effective mixing layer result by using an elementary functional

approximation (integral constraint)as:
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_ (2o-wake )1/2

J1-erf (0, 605 = [exp- 0, £ > 07, = 2T 20)

Using a wake value o, ® 10— 0, =1.4; implying that an estimated value in the preceding analysis should
be O(1).

Using this estimate for ¢ we can utilize equation (23) to estimate damping  as a function of the dimensionless
frequency a as:

oy

p 4 14 @n

Implying thatthe dampingparameteris directly related to the critical frequency. How well does this approximation
agree with previous modeling efforts? 1In reference [1], a typical value for the critical frequency (Strouhal number)

was estimated as (using current notation): 0=0.257. This value implies (through equation (21)) that
27 (0.257)°

p=

~ 0.052. This value is in excellent agreement with the damping constant recommended for

4 1.4

use with f# = 20 =0.05. We emphasize, that while this agreement is very good, that the analyses used to create

are quite approximate and the result should be only used as a guide. Nonetheless, the closure for the damping term
derived here provides a useful support to the previously developed PSD model.

(4) RMS Pressure Fluctuation Values

An estimate for the magnitude associated with pressure fluctuation and inherently connected to the PSD/ASD
magnitude is the Root Mean Square RMS values, ie., pms. The importance of this quantity in describing the
magnitude of the fluctuations means that several empirical and semi-empirical estimates are available. The most
classical result is thatby Shvets [3] who describe the empirical expression:

prms — 006

g, (1+M,) 22)

In their monograph Chaump,et.al. [17] examine high Mach numbersharp cone behavior. Their modelfollows as:

Prms 0.01Mj
p, 1+0.04M; (23)

Where here, py is the base pressure and My is the somewhat ill-defined base Mach number. Obviously, the base

pressure can be related to the base pressure ratio Ly which in turn be related to the dynamic pressure. Further, for

P
small halfangle cones, the base pressure Mach numbercan be approximated equated to the free-stream value (local
expansion, but viscous reduction):
prms _ 2 pb OO lMi
q, \yM: )\ p,)1+0.04M] 24)

14
American Institute of Aeronautics and Astronautics



Further, we have access to experimental measurements for sting mounted base pressure measurements (5 deg cone
Mach 5 and Mach 8) [13] as wellas Mach 2.45 simulations. These values can be plotted to give the result in Figure
12. The implementation following [1] utilizes the Shvets [3] type Mach number behavior. We suggest that this
model provides a useful intermediate result for a range of Mach numbers.

O 5 deg HWT

O 5 deg HWT

< Stack LES blunt base, estimate
— Turb Re=5e6, 5 deg, Chaump 1973
—— Turb Re=5e7, 5 deg Chaump 1973
— Shvets 1979

10"1_

=, Cylinder

=
g 10~
) ©
-4
10 Cone
lOAS" T T T T T 1
2 4 B8 8 10 12
M

Figure 12. RMS pressure fluctuation for5 deg sharp cone using the Shvets [3], Chaumpet.al. [17] models
compared to LES computation (Stack)and sting mounted HWT [13] measurements. The HWT measurements
(highlighted by dark circles) seem tounderestimate the RMS values.

There is value in examining the low values of the High-speed Wind Tunnel (HWT) RMS pressure fluctuation results
[13] as compared to simulation and analytical expressions shown in Figure 12. We suggest that a possible bias
towards reduced pressure fluctuation magnitude is associated with the wind tunnel model support i.e., the offset
from center base mounted sting. While this potential bias was of concern, there was little direct evidence to support
the degree of bias etc. Fortunately, a subsequent set of tests led by Saltzman have been completed using an
alternative blade mount that does not introduce local base blockage. Moreover, a broad suite of additional
computations that examined the role of base mounting were performed. Comparison of these results fora HWT
configuration (symbols) plotted with the simulation results (lines) clearly suggest that the sting mount causes a
significant reduction in the local pressure fluctuation magnitude, implying that the sting mount interference limits
the viability of these measurement in the base flow region.
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Figure 13. RMS pressure fluctuation measurements for 5-degree sharp cone using blade mounted sting (symbols)
versus simulation (NS: No Sting, CS: Center mounted Sting, OST etc: Offset Sting are various offset sting location)
for Mach 8 demonstratingthatthe measurementsare in good agreement with the No Sting case. These
measurements and simulations results suggest thatthe presence of the base sting likely biased the previous RMS
measurements.

In summary, the development described here has focused on examining several key components of the DeChant-
Smith base pressure fluctuation PSD model. Here our goal has been to examine these features as pertains to
physical basis and high speed/compressible effects. Examination of available information from the literature,
dedicated high fidelity simulations and in-house supporting experimental measurements. These results suggest that
the current approach islikely anadequate model forsphere-cone geometries for a range of flow conditions.

III. Conclusion

The preceding development demonstrate that the current employed PSD models provides a viable reduced order
closures for turbulent base pressure fluctuations for high Reynolds number flows over range of Mach numbers.
Access to a reliable base pressure fluctuation reduced order model as described by [1] then permits simulation of
bluffbody vibratory input as required for fluid structure interaction problems. We have specifically focused on:

1. Critical/dominant fluctuation frequency
2. Loading amplification nearthe dominant frequency due to dampingin current formulation
3. Root- mean square (RMS)/PSD magnitude.

Confidence in the adequacy of this approach was established using a detailed high-fidelity computational study is
compared to measurements by Janssen and Dutton [9], dedicated Mach 8 cone base measurements forseveral model
mounting configurations [13] with attendant high-fidelity simulations showing support for theory-based closures,
and several theory-based approaches that strongly support the original PSD model behavior. The role of high-
fidelity Large Eddy Simulation (LES) and measurement has been highlighted. Mounting configuration for wind
tunnel test has been shown to be important forbase pressure measurement with the minimal blockage blade mounted
support providing minimal base interference. This study also serves to illustrate the supportive interaction between
approximate theory, high-fidelity simulation, and wind tunnel measurements in characterization of a complex
physical phenomena.

IV. Appendix I: Classical Derivation for Bluff Body Shedding Frequency

Base pressure fluctuation behavior in the lee of a blunt body is characterized by large scale unsteady behavior, a
situation consistent with the classical von Karman vortex street. Though the turbulent wake of high Reynolds
number problems does not exhibit the classical periodic street, as noted by Rigas [18] “Despite their turbulence,
such wake flows exhibit organization which is manifested as coherent flow structures; these are usually associated
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with increased noise, structuralfatigue and drag.” Thus, characterization of large-scale frequency behavior for bluff
body flow becomes essential.

The previous analysis developed by [1] yielded estimates for the base pressure fluctuation PSD. Within that
analysis is the critical estimate for the dimensionless frequency (Strouhal number) of the coherent structures. The
developmentby [1] followed [2]to give the Strouhalnumberthe result:

1
2—7[2K(1+CD)

(A.1.1)
C, +K
Re

S =

A typical estimate for S envisions Re>>1 and K ~1.53. Using these values, a high Reynolds number estimate for
anormalplate would be: Cp=1.7 and S=0.21 (measurements from [19] suggest S=0.135).

The preceding estimates for the shedding frequency suggest that there may be value in reviewing the Strouhal
number estimates used in the base pressure fluctuation model. A perhaps natural place to start this process is to
examine the classical approach developed by [19] and others. The Roshko [19] approach is one based upon a
classical model for a von Karman vortex street represented by two series of point vortices of equal strength
separated by periodic distance “a”. Each modeled vortex is separated from the other by distance “b”. This simple
model is described by Goldstein [20].  While relatively simple in form, this model a significant degree of

information. Using this model, we can estimate the drag on the bluffbody as:

h u uY
C, _E 5.565—2.25(UJ (A.12)

Where h is the width of the wake and is set equal to the shear layer spacing with h=b and u is the speed associated
with the vortex sheet relative to the free stream U. The strength of the vortices is directly related to the shear layers.
Roshko [19] uses this information to provide a connection between the base pressure parameter “k” (which is

u.
directly related to the increased velocity needed to negotiate the blockage of the body as: k = U‘ >1. The

relationship derived by Roshko statesthat:

w_ Ly, V2
Uu 2 2 (A.1.3)

Notice here the introduction of a term “c” which is related to the amount of vorticity generated by the bluff body
compared to the amount that is captured in the vortex street. Traditionally we estimate that about 50% of the
generated vorticity is captured in the vortex system. We will propose that c is closer to 0.4-0.45 and is dependent
on the type of bluff body. Unfortunately, the vortex frequency S will be shown to be sensitive to this parameter.
We note that a very simple extension to our analysis involves correlating ¢ with drag since separated flow bodies
have a larger value for c as compared to less well-defined separation bodies (e.g., cylinder). An expression such as:

c=(045- 0.4)CD +0.4 will provide a useable approximation forc.

To complete the solution, we need to relate u/U to the vortex system spacing parameters. This is accomplished by
referring to the analysis of Bearman [22] (who references the Kronauer stability criterion) which implies that the
vortex system will conform toreach a state of minimum drag giving:
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Equation (A.1.4) provides a mappingbetween b/a and u/U. The final expression necessary is to relate the drag back
to the k e.g., us/U.  While we normally think of drag as being based upon geometry only, a key generalization
espoused by Roshko [1] was to include k information. Roshko [1] achieves this by solving a series of complex
“notched hodograph” free-streamline problems. A more workable approach is simply to relate drag to k using
parameterizations of these solutions. A workable expression is simply:

2
k
Cp =Cpy [k_oJ (A.1.5)

Where Cpo is the typical drag coefficient and ko=1.5. An example of this model prescription is for a normal plate
where Cpo=2. These expressions provide sufficient information to estimate the associates Strouhalnumberas:

_Jd_W-wd o ufdifb
v e v U)(hj(aj (A.16)

The preceding expressions, i.e. equations (A.1.2)-(A.1.6) provide sufficient information to estimate the Strouhal
number S as a function of Cp and Cpo. Unfortunately, the algebraic complexity of the associated expressions will
makea closed form expression unavailable requiring us to exam typicalcases. Let’s consider several relevant cases:

Bluff Body Cpb Cpo S (meas) S (current) | Rel. Err. S Rel. Err.
(Ahlborn)

2-d cyl. 1 1.1 0.21 0.23 10% 0.15 30%

2-d wedge 1.3 1.3 0.18 0.22 30% 0.14 22%

2-d norm plate | 1.7 2.0 0.14 0.14 0% 0.12 60%

sphere 0.5 0.5 0.39 0.48 24% 0.23 40%

cone (35 deg) 0.6 0.6 045 041 9% 0.21 48%

Table A.1.1 Comparison between Strouhalnumberestimatesas derived using the current (Roshko approach [19])
and the Ahlborn model [2]

The preceding analysis suggests that shedding frequency as computed using the current approach is likely an
improvement over the empirically based Ahlborn model [2].

V. Appendix II: Approximate Model for Mean Base Pressure

As noted in the text. estimates for the base pressure in the lee of hypersonic vehicles is an important quantity needed
to provide estimates of the net drag force on the system. An extensive body of measurement, computation and
theory-based literature is available to estimate base pressure, however, a very widely utilized family of empirical
expressions proposed by Lamb and Oberkampf [21] have gained wide acceptance. Here, we consider a physics-
based expression for the zero angle-of-attack base pressure derived using an approximate energy integral to connect
the base expanded inviscid flow field to the mixing dividing streamline. The wake flow field is approximated using
an elementary analytical approach. The mixing model is sensitized to compressibility using simple arguments.
Finally, the dividing streamline pressure is projected onto the base via an isentropic argument. While the resulting
analytical expression is simple, it appears to be capable of modeling base pressure Mach number and Reynolds
number trends. The efficacy of the result is suggested by good comparison to the Lamb-Oberkampf correlation, as
well as classical measurements. Since some of the Lamb-Oberkampf expressions can involve boundary layer edge
pressure quantities which are not readily available within the scope of elementary correlations, approximate closed -
form models are presented to relate these quantities back to more readily available information. The current
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approach provides useful insight into the near wake behavior for hypersonic bodies by providing approximate
estimates for mean base pressure behavior.

Here we describe the turbulent version of the DeChant-Wagnild base pressure model. The derivation of these
expressions is described elsewhere.

y/(1=y)

2
7_1(1_0M1.25)2 [”Dj M
2 e e

PPy t
2
Po P -1 u
0 1+L[l—(l—cM;'25)2 Up ]Mezs
2 u,
(A2.1)
Where,
2 1/2 2
D, u, 1 «/5 Re,
| =c,| | =¢)| 1-=|erf| — '
Do)y u, 2 4 \ Re,,
(A2.2)
And the parameters are given by:
c = 0.025
co =
Re, = 5E5
and
u 1 3N2 2
L 1| erf i +erf £ -08
w, 2 16 16
For a conical body, the edge Mach numberis estimated using the Taylor Maccoll-based expression:
M
e 2
14+3yM  sin” @ (A2.4)

Where 0 =cone half angle (radians). These expressions are utilized in the text to estimate the base pressure
component of the net vehicle drag.

While the current effort is focused on base pressure fluctuation as opposed to mean base pressure the minimal base
pressure interference offered by the blade mounted sting measurements offers an opportunity to compare theresults
of the mean base pressure models as described by equations (A.2.1) and (A.2.2) to experimental data. Figure
(A.2.1) presents these results.
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Figure A.2.1: Comparison between empirical model e.g., Lamb and Oberkamf[21], current theory as equations
(A.2.1) and (A.2.2) and blade mounted 5-degree cone, Mach=8 Saltzman HWT measurements suggesting
reasonable agreement.
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