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 The near wake flow field associated with hypersonic blunt bodies is characterized by complex physical 

phenomena  resulting in both steady and time dependent pressure loadings on the base of the vehicle.   Here, we 

focus on the unsteady fluid dynamic pressure fluctuation behavior as a  vibratory input loading.  Typically, these 

flows are characterized by a locally low-pressure, separated flow region with an unsteady formation of vortical cells 

that are locally produced and convected downstream into the far-field wake.   This periodic production and transport 

of vortical elements is very-well known from classical incompressible fluid mechanics and is usually termed  as the 

(Von) Karman vortex street.   While traditionally discussed within the scope of incompressible flow, the periodic  

vortex shedding phenomenon is known for compressible flows as well.   To support vehicle vibratory loading design 

computations, we examine a suite of analytical and high-fidelity computational models supported by dedicated 

experimental measurements.  While large scale simulation approaches offer very high-quality results, they are 

impractical for design-level decisions, implying that analytically derived reduced order models are essential.   The 

major portions of this effort include an examination of the DeChant-Smith Power Spectral Density (PSD) [1] model 

to better understand both overall Root Mean Square (RMS) magnitude an d functional maximum associated with a 

critical vortex shedding phenomenon.   The critical frequency is examined using computational, experiments and a n  

analytical shear layer frequency model.  Finally, the PSD magnitude maximum is studied using a theory-based 

approach connecting the PSD to the spatial correlation  that strongly supports the DeChant-Smith PSD model 

behavior.  These results combine to demonstrate that the current employed PSD models provide plausible reduced 

order closures for turbulent base pressure fluctuations for high Reynolds number flows over range of Mach numbers.   

Access to a reliable base pressure fluctuation model then permits simulation of bluff body vibratory input. 

 Nomenclature 

A = local constant 

c = constant (locally defined) 

c = a damping constant 

CD = body drag coefficient 

d,D = base diameter 

f = frequency 

h = vortex layer thickness 

Me = edge Mach number 

P = pressure 

qe = edge dynamic pressure 

r0 = base diameter 

Re = Reynolds number 

St = dimensionless vortex shedding frequency 

S = dimensionless vortex shedding frquency 

u = streamwise mean velocity 

U = free stream 

K =  local constant 

KC = Clauser constant =0.016 

c = a damping constant estimated as 0.05 (additional development subsequently). 

qe = edge dynamic pressure 
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α,β = parameters 

λ = wavelength 

ω = dimensionless angular frequency 

θ = cone angle 

 

Subscripts/superscripts 

 

0 = constant 

b = base 

e = edge 

mag = magnitude 

rms = root mean square 

 

 

I. Introduction 

 

ase pressure fluctuation and mean base pressure behavior is an important physical behavior associated with  the 

near wake for blunt base geometries.   Typically, these flows are characterized by a locally low-pressure, 

separated flow region with an unsteady formation of vortical cells that are locally produced and convected 

downstream into the far-field wake.   This periodic production and transport of vortical elements is very -well known 

from classical incompressible fluid mechanics and is usually termed as the (von) Karman vortex street.   While 

traditionally discussed within the scope of incompressible flow, the periodic vortex shedding phenomenon is known 

for compressible flows as well. 

 
Figure 1. Base flow behavior for a bluff  body using high fidelity LES simulations for a Mach 2.46 63.5 mm 

diameter after body 

 

The unsteady periodic shedding behavior induces a flow-induced time dependent frequency.   Coupling between the  

flow velocity field and the induced pressure through momentum conservation forms the basis for unsteady pressure 

loading associa ted with the bluff body base.   Estimation of this loading is the focus of this discussion. 

 

Base pressure fluctuation loading is typically describe using the frequency space auto-spectral density (ASD), or 

power spectral density (PSD), which inherently contains both spectral and magnitude information.   DeChant and 

Smith [1] describe such a formulation where magnitude information  and dominant frequency results are related to 

previous efforts such as Ahlborn [2] and Shvets [3].   The derivation of this model relies on an approximate unsteady 
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vortex flow approach.   This model has been successfully used for a wide range of loading simulation efforts where 

base pressure fluctuation effects play a relatively limited role.   The overall structure of the PSD function is 

consistent with experience, however, for some body geometries and flow conditions the DeChant and Smith model 

requires additional verification to be of value as pertaining to the supporting quantities: 

 

1. Critical/dominant fluctuation frequency 

2. Loading amplification near the dominant frequency due to damping in  current formulation 

3. Root- mean square (RMS)/PSD magnitude. 

 

We start by describing the basic DeChant/Smith PSD model paying particular attention to the role of the critical 

frequency and the amplification of the PSD at this frequency.   Physics-based critical frequency model estimates a re 

examined and compared to both high fidelity simulation results and experimental measurements.  Finally, the PSD 

magnitude closure is examined in detail.   The net result of this discussion is to examine the essentia l components of 

the PSD model in light of physics-based processes.  

 

 

II. Analytical Models: Development and Comparison to Representative Data Sets 

 

Here we start by examining the base pressure fluctuation model [1]. 

 

(1) Base Pressure Fluctuation: DeChant-Smith (2011) 

 

Base pressure fluctuations are approximately described by a simple model developed in [1].   The major result of the 

model is an estimate for the base pressure fluctuation is the base pressure fluctuation PSD (i.e. ASD).   The result is 

a  spatial average across the base of the body and is thereby not spatially dependen t.   Similarly, spatial coherence 

information plays no role in this formulation. 

 

Following [1], we describe this model as: 

 

( )
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This formulation is described in detail in [1], but we include a typical result in Figure 2 which compares low speed 

measurements to the associated theory. 
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Figure 2. Typical base pressure PSD result emphasizing the relative importance of the critical frequency location at 

the maximum of the PSD magnitude. 

 

 

We emphasize that the maximum PSD magnitude is associated with the critical frequency that is denoted by the 

Strouhal number.  The Strouhal number can be empirically estimated by the expression: 

( )
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4
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2
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2

NK
C

CK

St

D

D

+

+

= 
 

where the empirical constants are K=1.53 and Re 4NK= .    

 

 

While we have access to the critical Strouhal number via this semi-empirical closure, there is obvious value in 

understanding the “provenance” and limitations of this type of result by examining the physics of this problem by 

surveying and developing Strouhal number models.   Further, the PSD magnitude increase associated with the 

critical frequency is largely driven by the magnitude of the damping term in “c” in equat ion (1), implying that 

justification for the estima ted value described previously is necessary.   Finally, the magnitude behavior of the PSD 

needs to be understood, especially, for compressible high-speed flow regimes. 

 

(2) Critical Strouhal Number 

 

To get a general sense of the efficacy of the previous (critical) vortex shedding Strouhal number models, let’s 

examine several typical problems.   Perhaps the simplest result is to estimate the cone vortex shedding frequency 

using the aforementioned Ahlborn model: [2] 

( ) ( )2 2

1 1
1 1
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4
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+ +

= 
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which can be 

approximated by: 

( )2

1
1

2
D

D

K C

St
C


+

 for large Reynolds numbers.   Obviously, a  key feature of this result is to 

estimate the associated drag coefficient since it represents the main connection between flow geometry and 

associated shedding frequency.   The physics of this connection to the drag is perhaps not particularly clear, but a  

discussion described in Appendix I connects classical low speed concepts to the current approach.   To apply, the 

current model to estimate the Strouhal number, we examine drag for conical bodies. 
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Drag coefficients for cones and cylindrical after bodies may vary considerably, but measurements [4] provide 

estimates that suggest: cone drag can be on the order of Cd=0.9.   We warn, however, that this value is large for a 

drag coefficient, which may be attributable to the rarefied conditions for these measurements. 

 

We can plot the Strouhal number as a function of the drag coefficient as depicted in Figure 3.   As indicated, we note 

that hypersonic cone drag estimates tend to suggest that drag coefficients may be much smaller than described 

previous with CD=0.1-0.2.   This smaller value is in accord with the very simple expression for cone drag: 

_ deg0.0112 0.162D cC = +  [5] suggesting that we could write: 

 

• _ deg( 5) 0.22 0.43D cC St = = → =  

• _ deg( 10) 0.27 0.36D cC St = = → =  

 

Notice that these Strouhal numbers are seemingly large as compared to a more common result with St≈0.25 that was 

described in [1]. 

 
Figure 3. Strouhal number as function of body drag via Ahlborn model [2].   Notice that drag will need to be large 

for reasonable shedding frequencies. 

 

We need to examine the efficacy of the Ahlborn [2] e.g., 

( )2

1
1

2
D

D

K C

St
C


+

 .   This model was developed for 

typically large blunt body problems at lower speeds.   A model that is more appropriate for high-speed flow (based 

on Mach 14 experiments for cones 15 deg and spherical bodies) is described by [6].   The result of their effort is to 

derive an expression for the Strouhal number as: 

 

1/2
1820

0.229(1 )
Re 2

DC Af
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U









 
= = − =  

        (2) 

Now, more meaningfully, we can estimate that: 
1820

1
Re

 so that we can write (for an axisymmetric base 

problem): 

 
1/22

(0.22)
4

D D

fD
St C

U

−= 
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Which plotted gives: 

 
Figure 4. Comparison between Goldburg-Washburn [6] Strouhal number and Ahlborn model for Strouhal number.   

We propose that the Goldburg and Washbun [6] is likely more appropriate. 

 

Using the [6]expression for our estimates of CD 

• _ deg( 5) 0.22 0.16D cC St = = → =  

• 0.9 0.082DC St= → =  

 

Clearly, there is rather considerable variation associated with the appropriate drag coefficient for co nical bodies.   

Estimates from measurements are, of course, useful. Krasilshchikov et. al. [7] estimates hypersonic drag coefficients 

(15 deg cone) on the order of CD=0.2.   Pick et. al. [8] suggests CD=0.1 for M=6 (10 deg) sharp cone. 

 

(a) High Fidelity Simulation versus Janssen and Dutton [9]; Kirchner et. al. [10] 

 

Let’s then in turn examine measured afterbody pressure behavior as described in the literature with associated high-

fidelity simulations.    Consider the experiment by [9] who consider a Mach 2.46 flow past a  63.5 mm diameter 

cylinder.   An estimate for dominant behavior is St=0.094.  Flow conditions yield U=569 m/s implying that: 

569
(0.094) 842

0.0635

U
f St Hz

D
= = = .   Examination of the simulation data  (pre-multiplied spectra f*PSD) 

suggest that f=1000Hz signifying that the pre-multiplied spectra bias the peak estimate.   Note that measurements 

[11] provide estimates for base pressure fluctuation for a blunt body.   Their results indicate that the Strouhal 

number can readily be less tha n 0.1.    

 

The base pressure Strouhal models need access to drag coefficient CD; let’s examine estimates for the Janssen and 

Dutton experiment. We have relatively little information for this problem in terms of the total drag since we do not 

readily have information for the upstream body.  For some problems, the drag coefficient is dominated by the base 

drag (low pressure zone in the body base region).   Obviously, a  significant part of our effort has been to estimate 

the base pressure behavior for hypersonic bodies.   Fortunately, the base pressure ratio described by equation (2) is 

directly related to the base pressure ratio via the base pressure coefficient as: _ _D base p baseC C= − .   This, can in 

turn, be related to the base pressure ratio bp

p

using: 
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1

_ 2

2
2 1 1b b

D base

p pq
C

p p M p

−



   

    
= − = −    

    
      (4) 

 

Using reasonable estimates for the Reynolds number (Unit Reynolds number is 5E7/m) as with Res=2E6 and 

modeling the problem as 5-degree cone ( eM M ).   The result is presented below where the single 

measurement follows from a similar supersonic wake simulated using high fidelity methods (LES) i.e. Kirchner and 

Dutton [9].   Theory-based estimates are possible (see Appendix II) for the base pressure ratio and are presented in 

Figure 5. 

 

We can use equation (4) to then estimate the base drag for this experiment as: 

( )_ 2

2
1 (0.5) 0.12

(2.46)
D baseC


= − = .   Corresponding Strouhal numbers for this value are 0.72 and 0.22, [2], 

respectively.   Obviously, these values are probably much too large; suggesting that the drag coefficient is too sma ll 

since a larger value for the base drag will imply a smaller value for the Strouhal number and better agreement with 

the data sets.    

 

The largest plausible (possible) drag coefficient is Cd=O(2) implying that St=0.115 using the Ahlborn approach.   

The Goldburg values would imply St=0.055.    However, this value is usually for a 2 -d shape e.g., elongate bar and 

would be seemingly much too large.   A more useful estimate would be for a n elongated cylinder aligned with the 

flow, as discussed by [12].   Notice, however, if we use the Goldburg et. al. model for CD=0.4-0.5, [12] we would 

yield St=0.078-0.12 whereby: 
569

(0.078 0.12) 985 1075
0.0635

U
f St Hz

D
= = − = − , seemingly bounding the 

base pressure frequency.    

 

 
Figure 5. Comparison between base pressure model and LES simulation for [9],[10] base flow problem. 

 

 

High fidelity simulations (LES) have been performed for a similar problem [10].  A typical PSD result is shown for 

the centerline value as St=0.09.   Application of this value gives: 
569

(0.09) 806
0.0635

U
f St Hz

D
= = = , which is 

in excellent agreement with measurement. 
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(a) PSD     (b) pre-multiplied PSD 

Figure 6. Base pressure fluctuation model for Kirchner Dutton [10] experiment.   Notice the shift in the peak 

frequency between the two approaches. 

 

 

 
Figure 7. Pressure fluctuation over base of cylindrical body; Kirchner and Dutton [10]). 

 

The PPSD is often utilized such that equal area under the PPSD function are correlated with equal power (p’2).  

Nonetheless, notice as well, the frequency shift between the PSD and PPSD or pre-multiplied PSD.  

 

(b) Offset Sting Cone M=8 Measurements with Limited Bladed Mounted Cone Results 

 

Dedicated (Sandia) experimental results have been performed to support the flow behavior associated with high-

speed conical base flow problems [13].  Examination of the current measurements yields U is on the order of 

U=1160 m/s while the base diameter is 0.0762 m.   The flow is a high-speed Mach 8 condition.   Measurements 

suggest that there is a lower frequency peak associated with this flow at approximately 700 Hz.   This frequency 

implies that the Strouhal number should be on the order of 
(700)(0.077)

0.046
1160

fD
St

U
= = = .   This is a 

smaller Strouhal number than we might expect for the cone problem and via the expression: 

1/22
(0.22)

4
D D

fD
St C

U

−=  requires a large value for cone drag coefficient.   Indeed, using the current model 

for Strouhal number would have required a value for CD=2.9 which is impossibly large.   If we used a drag value of 

say 0.2 in the [6] expressions 
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Figure 8. HWT Mach 8 offset sting pre-multiplied spectrum [13] for 5 deg cone; suggesting a peak at 700Hz. 

 

While our analysis does not seem capable of estimating sufficiently low frequency (small Strouhal number) 

behavior, small values are known.   Indeed, [3] mentions that the frequency of ba se shedding decreases with Mach 

number.   He provides a graph which demonstrates this behavior.  Notice for that for low supersonic Mach number, 

increasing Mach number implies reduction in Strouhal number.   However, this reduction is limited for high Mach 

number.  While useful, we need to be careful since this expression is likely associated with the premulitiplied 

frequency.  

 
Figure 9. Reduction in peak frequency as a function of Mach number; following [3]. 

 

An experimental and computational study that exhibits low frequency peaks is described by Saile et. al. [14].   Their 

study for a blunt coned cylindrical body with an axisymmetric extension in the base (not a sting mount, but a nozzle 

model) suggest that the relatively large diameter (40% of the diameter) impacts the associate base spectra by 

lowering the Strouhal number to be on the order of 0.025-0.03 

 

(c) Shear Layer Fluctuation Behavior 

 

Lower frequency behavior in the wake zone can be difficult to reconcile with the vortex shedding behavior 

described previously.   There are, however, lower frequency unsteady behaviors that are associated with the Kelvin -

Helmholtz behavior associated with the wa ke/recirculation shear zone behavior.   Let’s examine these results using 

some simple theoretical estimates for the behavior.   The Kelvin-Helmholtz instability is very well known, and we 
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can use some of the classical (inviscid) theory to help us estimate the frequencies associated with the most critical 

(fastest growing) disturbance.   Briefly, the governing equations [15] associated with inviscid flow (Rayleigh 

equation) are simply: 

 

2

2 2
2

2
0

d u

d f dy
k f

dy
u

k


− − =

−
      (5) 

 

Where f is rela ted to the stream function (2-d) as: ( )exp( ( ))f y i kx t = − .   Solution of equation (8) is 

challenging, but simplifies considerably if we describe the u(y) with piecewise linear profile with appropriate 

boundary condition connecting them f(L+)=f(L-) and (u-ω/k)f’(L)=f(L)du/dy.  Notice that 

2

2
0

d u

dy
= .   Consider now 

the linear profile given by: 

 

 

 
Figure 10. Piecewise linear profile representing wake/recirculation bubble interface [15]. 

 

Using the previous expressions, we can compute an expression for 

2

0
k

 
= 

 
as: 

 ( )
2

2 21
(1 2 ) exp( 4 )

4

U
kL kL

L


 
= − − − 

        (6) 

The fastest growing (most dangerous) growth ra te/frequency i.e., ω is computed via the derivative to give: 

0.398 0.4kL =  whereby 0.20
U

L


 
=  

 
.   To utilize this result, we need to make estimates for value of L.   A 

perhaps reasonable approach to estimate the shear layer width would be to delineate L=R/2=D/4 with U∞/2<U<U∞, 

Recognition that 
2 2

0.4
k

L

 



= → = then gives: 

 

(0.20)(0.40)
0.051

2 2

U Ukf
L D




  

   
= = = =   

   
      (7) 
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This expression suggests that low frequency/small Strouhal number behavior may indeed be possible for base flow 

behavior.   Here, we emphasize, that this low frequency behavior is not associated with the vortex shedding behavior 

but is contained within the shear layer model. 

 

 

(3) Loading Amplification Near the Dominant Frequency Due to Damping  

 

As describe by equation (1), [1] derived expressions for the base pressure fluctuation and proposed a PSD of the 

form: 

 

2 2 2

2 2 2 2

0

cos( )exp( )cos( )
( ( ) )( ( ) )

x x x dx
  

  
     


+ +

  − =
+ + + −       (8) 

Where α and β are parameters, α being the critical dimensionless wave number/Strouhal number described 

previously. We have intentionally introduced a different notation to emphasize the general nature of the closure 

approach.  The damping term β (equivalent to “c” in equation (2) was estimated using some physical arguments 

previously but is rather less well described and needs to be estimated for the local shear problem.  Fortunately, 

classical turbulent shear behavior is well-known in the literature and can be used to estimate pressure fluctuation 

statistics. 

 

Consider, the classical solution for a 2-d mixing layer with the mean flow behavior [16] written as: 

 1 2 1

1
( , ) ( )(1 ( ))

2

y
u x y U U U erf

x
= + − +

      (9) 

Where the constant σ is a dimensional constant that is O(1-10) depending on our definition approach. 

 

The most important associated result follows that we can write the Reynolds stress in the form 

2 2

2 1 2 1' ' ( ) ( ) exp( ( ) )
u y

u v U U x U U
y x




 − = − −


or grossly approximating a pressure fluctuation 

magnitude: 
2 2

2 1' ' ' ( ) exp( ( ) )
y

p u u U U
x

   − − .   Notice that we are using a simple ansatz relating 

pressure fluctuation to velocity fluctuation ' ' 'p u u that is common for isotropic turbulence [16]. 

 

Considering y>0 only we can approximate: ' exp( 2 )
y

p
x

−  and then compute an estimate for the later 

correlation Ry(dy) as: 

 
0

( ) exp( 2 )exp( 2 ( )) exp( 2 )yR y y y y y  


 = − − +   −        (10) 

Access to the cross-stream correlation then implies that we can pose the correlation-coherence constraint as: 

 
0

( ) exp( 2 ) ( ) exp( )yR y y B y d   


= − =  −       (11) 
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Where, of course, 

2 2 2 2 2

2 2 2 2

( )( )

( ( ) )( ( ) )

    

     

+ + +


+ + + −  ,
exp( )B y−

is the lateral coherence across the 

base of the bluff body and C is a scaling constant. 

 

Unfortunately, the resulting integral 

0

( ) exp( )B y d  


 − is very complex and yields results that are not 

amenable for further analysis.   A simple functional analysis approximate is appropriate here.   Consider the closure 

(integral constraint) exp( )  − where: 

 

 

2 2 2 2 2

2 2 2 2

0 0

( )( )
exp( )

( ( ) )( ( ) )
d d

    
  

     

 
+ + +

− =
+ + + −        (12) 

 

To give 
2 2

2

( )




  
=

+
.   

 

We are now able to write the coherence constraint as: 

 

 2 2

0

2
( , , , , ) exp( 2 ) exp( )exp( ) 0

( )
f y B C y C B y d


     

  



= − − − − =
+       (13) 

which is a residual expression with several unknown parameters e.g., β, B and C (α is known) valid for 0<y<∞. 

 

We can compute estimates for the unknown parameters by demanding satisfaction of the residual.   For example, by  

evaluating f(y=0) the resulting algebraic expression gives: 

 2 2

2
(0, , , , ) 0

( )
f B C C


 

  
= → =

+       (14) 

Of greater interest, however, is an estimate for β.   We compute this value by using the derivative constraint:  

 

2 2 2 2

2 2

2 2 4
'(0, , , , ) 0

( )

B
f B C

B

    
  

   

− −
= = → =

+       (15) 

Finally, we can estimate, the coherence constant B as: 

 

2 2 2 2

2 2

2 4 2
''(0, , , , ) 0 2

( )

B
f B C B

B

    
 

   

− −
= = = → =

+       (16) 

Thus, we can obtain estimates for parameters in preceding equations 

 

We are most interested in the damping β since it is this term that dramatically influences the behavior of the PSD.   

As such, we can consider in more detail the size of this term.   Let’s then consider the expression for β 
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Thus, we can see that for small α that the damping term will be small.   Moreover, the PSD 

2 2 2 2 2
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( )( )

( ( ) )( ( ) )

    

     

+ + +


+ + + −
 is then no longer a function of two variables but is a  function of the 

critical frequency α only.  Indeed, using this closure and with σ=1 we can plot the scaled PSD as: 

 

 
Figure 11. Base pressure PSD for several critical frequencies demonstrating the increase in magnitude near the 

critical frequency. 

 

Let’s examine more completely the results expressed here by considering the implications of the damping term 

identified in equation (17) as it provides an estimate for the damping behavior.  To use equation (17) we will need 

an estimate for the turbulent spreading rate term σ.   Traditionally, for a mixing layer, σ=13.5 [16], and smaller 

values are used for jets i.e., σ=7.7.   However, compressible mixing is typically significantly suppressed  as 

compared to incompressible behavior.   Moreover, the use of the mixing layer formulation is only an analogy for 

wake flow.   Indeed, the 2-D mixing layer expressed by equation (9) can be modified to provide a defect velocity 

formulation as: 

 
( , ) 1 ( ))effu x y erf  = −

      (18) 

Which can be more readily compared to the wake defect velocity as: 

 
21

( , ) exp( ))
2

wakeu x y  = −
      (19) 

Knowing the value for wake we can estimate an effective mixing layer result by using an elementary functional 

approximation (integral constraint) as: 
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Using a wake value 10 1.4wake eff  → = ; implying that an estimated value in the preceding analysis should 

be O(1). 

 

Using this estimate for σ we can utilize equation (23) to estimate damping β as a function of the dimensionless 

frequency α as: 

 

22

4 1.4

 
 =

      (21) 

Implying that the damping parameter is directly related to the critical frequency.   How well does this approximation 

agree with previous modeling efforts?   In reference [1], a  typical value for the critical frequency (Strouhal number) 

was estimated as (using current notation): α=0.257.   This value implies (through equation (21)) that 

22 (0.257)
0.052

4 1.4


 =  .   This value is in excellent agreement with the damping constant recommended for 

use with 
1

0.05
20

 = = .  We emphasize, that while this agreement is very good, that the analyses used to create 

are quite approximate and the result should be only used as a guide.   Nonetheless, the closure for the damping term 

derived here provides a useful support to the previously developed PSD model. 

 

(4) RMS Pressure Fluctuation Values 

 

An estimate for the magnitude associated with pressure fluctuation and inherently connected to the PSD/ASD 

magnitude is the Root Mean Square RMS values, i.e., prms.   The importance of this quantity in describing the 

magnitude of the fluctuations means that several empirical and semi-empirical estimates are available.   The most 

classical result is that by Shvets [3] who describe the empirical expression: 

 2

0.06

(1 )

rmsp

q M 

=
+       (22) 

In their monograph Chaump, et. al. [17] examine high Mach number sharp cone behavior.   Their model follows as:  

 

2

2

0.01

1 0.04

rms b

b b

p M

p M
=

+       (23) 

Where here, pb is the base pressure and Mb is the somewhat ill-defined base Mach number.   Obviously, the base 

pressure can be related to the base pressure ratio bp

p

which in turn be related to the dynamic pressure.   Further, for 

small half angle cones, the base pressure Mach number can be approximated equated to the free -stream value (loca l 

expansion, but viscous reduction): 
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2 2
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Further, we have access to experimental measurements for sting mounted base pressure measurements (5 deg cone 

Mach 5 and Mach 8) [13] as well as Mach 2.45 simulations.   These values can be plotted to give the result in Figure 

12.  The implementation following [1] utilizes the Shvets [3] type Mach number behavior.   We suggest that this 

model provides a useful intermediate result for a range of Mach numbers. 

 
Figure 12. RMS pressure fluctuation for 5 deg sharp cone using the Shvets [3], Chaump et. al. [17] models 

compared to LES computation (Stack) and sting mounted HWT [13] measurements.   The HWT measurements 

(highlighted by dark circles) seem to underestimate the RMS values. 

 

There is value in examining the low values of the High-speed Wind Tunnel (HWT) RMS pressure fluctuation results 

[13] as compared to simulation and analytical expressions shown in Figure 12.  We suggest that a possible bia s 

towards reduced pressure fluctuation magnitude is associated with the wind tunnel model support i.e., the offset 

from center base mounted sting.   While this potential bias was of concern, there was little direct evidence to support 

the degree of bias etc.   Fortunately, a  subsequent set of tests led by Saltzman have been completed using an 

alternative blade mount that does not introduce local base blockage.   Moreover, a  broad suite of additional 

computations that examined the role of base mounting were performed.   Comparison of these results for a  HWT 

configuration (symbols) plotted with the simulation results (lines) clearly suggest that the sting mount causes a 

significant reduction in the local pressure fluctua tion magnitude, implying that the sting mount interference limits 

the viability of these measurement in the base flow region. 
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Figure 13. RMS pressure fluctuation measurements for 5-degree sharp cone using blade mounted sting (symbols) 

versus simulation (NS: No Sting, CS: Center mounted Sting, OST etc: Offset Sting are various offset sting location) 

for Mach 8 demonstrating that the measurements are in good agreement with the No Sting case.  These 

measurements and simulations results suggest that the presence of the base sting likely biased the previous RMS 

measurements. 

 

In summary, the development described here has focused on examining several key components of the DeChant -

Smith base pressure fluctuation PSD model.  Here our goal has been to examine these features as pertains to 

physical basis and high speed/compressible effects. Examination of available information from the literature, 

dedicated high fidelity simulations and in-house supporting experimental measurements.   These results suggest that 

the current approach is likely an adequate model for sphere-cone geometries for a range of flow conditions. 

 

 

III. Conclusion 

 

The preceding development demonstrate that the current employed PSD models provides a viable reduced order 

closures for turbulent base pressure fluctuations for high Reynolds number flows over range of Mach numbers.   

Access to a reliable base pressure fluctuation reduced order model as described by [1] then permits simulation of 

bluff body vibratory input as required for fluid structure interaction problems. We have specifically focused on: 

 

1. Critical/dominant fluctuation frequency 

2. Loading amplification near the dominant frequency due to damping in current formulation  

3. Root- mean square (RMS)/PSD magnitude. 

  

Confidence in the adequacy of this approach was established using a detailed high-fidelity computational study is 

compared to measurements by Janssen and Dutton [9], dedicated Mach 8 cone base measurements for several model 

mounting configurations [13] with attendant high-fidelity simulations showing support for theory-based closures, 

and several theory-based approaches that strongly support the original PSD model behavior.   The role of high-

fidelity Large Eddy Simulation (LES) and measurement has been highlighted.   Mounting configuration for wind 

tunnel test has been shown to be important for base pressure measurement with the minimal blockage  blade mounted 

support providing minimal base interference.  This study also serves to illustrate the supportive interaction between 

approximate theory, high-fidelity simulation, and wind tunnel measurements in characterization of a complex 

physical phenomena. 

 

 

IV. Appendix I: Classical Derivation for Bluff Body Shedding Frequency  

 

Base pressure fluctuation behavior in the lee of a blunt body is characterized by large scale unsteady behavior, a  

situation consistent with the classical von Karman vortex street.   Though the turbulent wake of high Reynolds 

number problems does not exhibit the classical periodic street, as noted by Rigas [18] “Despite their turbulence, 

such wake flows exhibit organization which is manifested as coherent  flow structures; these are usually associated 
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with increased noise, structural fatigue and drag.”  Thus, characterization of large-scale frequency behavior for bluf f  

body flow becomes essential. 

 

The previous analysis developed by [1] yielded estimates for the base pressure fluctuation PSD.   Within that 

analysis is the critical estimate for the dimensionless frequency (Strouhal number) of the coherent structures .   The 

development by [1] followed [2]to give the Strouhal number the result: 

 

2

1
(1 )

2

Re

D

D

K C

S
NK

C


+

=

+
      (A.1.1) 

A typical estimate for S envisions Re>>1 and 1.53K  .   Using these values, a  high Reynolds number estimate for 

a  normal plate would be: CD=1.7 and S=0.21 (measurements from [19] suggest S=0.135). 

 

The preceding estimates for the shedding frequency suggest that there may be value in reviewing the Strouhal 

number estimates used in the base pressure fluctuation model.   A perhaps natural place to start this process is to 

examine the classical approach developed by [19] and others.  The Roshko [19] approach is one based upon a 

classical model for a von Karman vortex street represented by two series of point vortices of equal strength 

separated by periodic distance “a”.   Each modeled vortex is separated from the ot her by distance “b”.  This simple 

model is described by Goldstein [20].   While relatively simple in form, this model a significant degree of 

information.   Using this model, we can estimate the drag on the bluff body as: 

 

2

5.56 2.25D

h u u
C

d U U

  
= −     

      (A.1.2) 

Where h is the width of the wake and is set equal to the shear layer spacing with h=b and u is the speed associated 

with the vortex sheet relative to the free stream U.   The strength of the vortices is directly related to the shear layers.   

Roshko [19] uses this information to provide a connection between the base pressure parameter “k” (which is 

directly related to the increased velocity needed to negotiate the blockage of the body as: 1su
k

U
=  .  The 

relationship derived by Roshko states that: 

 
21 2

1 1
2 2

u
ck

U

 
 = + −
 
 

      (A.1.3) 

Notice here the introduction of a term “c” which is related to the amount of vorticity generated by the bluff body 

compared to the amount that is captured in the vortex street.   Traditionally we estimat e that about 50% of the 

generated vorticity is captured in the vortex system.   We will propose that c is closer to 0.4-0.45 and is dependent 

on the type of bluff body.  Unfortunately, the vortex frequency S will be shown to be sensitive to this parameter.    

We note that a very simple extension to our analysis involves correlating c with drag since separated flow bodies 

have a larger value for c as compared to less well-defined separation bodies (e.g., cylinder).   An expression such as: 

(0.45 0.4) 0.4Dc C= − +  will provide a useable approximation for c. 

 

To complete the solution, we need to relate u/U to the vortex system spacing parameters.   This is accomplished by 

referring to the analysis of Bearman [22] (who references the Kronauer stability criterion) which implies that the 

vortex system will conform to reach a  state of minimum drag giving: 



 

American Institute of Aeronautics and Astronautics 

 

18 

 
2cosh( ) 2 sinh( ) cosh( )sinh( )

b U b b b b

a u a a a a
    

   
= − −   
   
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Equation (A.1.4) provides a mapping between b/a and u/U.   The final expression necessary is to relate the drag back 

to the k e.g., us/U.   While we normally think of drag as being based upon geometry only, a key generalization 

espoused by Roshko [1] was to include k information.   Roshko [1] achieves this by solving a series of complex 

“notched hodograph” free-streamline problems.   A more workable approach is simply to relate drag to k using 

parameterizations of these solutions.  A workable expression is simply:  

 

2

0

0

D D

k
C C

k

 
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 
      (A.1.5) 

Where CD0 is the typical drag coefficient and k0=1.5.   An example of this model prescription is for a normal plate 

where CD0=2.  These expressions provide sufficient information to estimate the associates Strouhal number as:  
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−   
= = = −   

  
      (A.1.6) 

The preceding expressions, i.e. equations (A.1.2)-(A.1.6) provide sufficient information to estimate the Strouhal 

number S as a function of CD and CD0.   Unfortunately, the algebraic complexity of the associated expressions will 

make a closed form expression unavailable requiring us to exam typical cases. Let’s consider several relevant cases: 

 

Bluff Body CD CD0 S (meas) S (current) Rel. Err. S 

(Ahlborn) 

Rel. Err. 

2-d cyl. 1 1.1 0.21 0.23 10% 0.15 30% 

2-d wedge 1.3 1.3 0.18 0.22 30% 0.14 22% 

2-d norm plate 1.7 2.0 0.14 0.14 0% 0.12 60% 

sphere 0.5 0.5 0.39 0.48 24% 0.23 40% 

cone (35 deg) 0.6 0.6 0.45 0.41 9% 0.21 48% 

 

Table A.1.1   Comparison between Strouhal number estimates as derived using the current (Roshko approach [19]) 

and the Ahlborn model [2] 

 

The preceding analysis suggests that shedding frequency as computed using the current approach is likely an 

improvement over the empirically based Ahlborn model [2].  

 

V. Appendix II: Approximate Model for Mean Base Pressure  

 

As noted in the text. estimates for the base pressure in the lee of hypersonic vehicles is an important quantity needed 

to provide estimates of the net drag force on the system.   An extensive body of measurement, computation and 

theory-based literature is available to estimate base pressure, however, a  very widely utilized family of empirical 

expressions proposed by Lamb a nd Oberkampf [21] have gained wide acceptance.   Here, we consider a physics-

based expression for the zero angle-of-attack base pressure derived using an approximate energy integral to connect  

the base expanded inviscid flow field to the mixing dividing st reamline.   The wake flow field is approximated using 

an elementary analytical approach.  The mixing model is sensitized to compressibility using simple arguments.    

Finally, the dividing streamline pressure is projected onto the base via an isentropic argument.   While the resulting 

analytical expression is simple, it appears to be capable of modeling base pressure Mach number and Reynolds 

number trends.   The efficacy of the result is suggested by good comparison to the Lamb -Oberkampf correlation, as 

well as classical measurements.   Since some of the Lamb-Oberkampf expressions can involve boundary layer edge 

pressure quantities which are not readily available within the scope of elementary correlations, approximate closed -

form models are presented to relate these quantities back to more readily available information.    The current 
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approach provides useful insight into the near wake behavior for hypersonic bodies by providing approximate 

estimates for mean base pressure behavior. 

 

Here we describe the turbulent version of the DeChant-Wagnild base pressure model.   The derivation of these 

expressions is described elsewhere. 
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Where, 
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And the parameters are given by: 

c = 0.025 

c0 = 5 

0Res  = 5E5 

and 
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For a conical body, the edge Mach number is estimated using the Taylor Maccoll-based expression: 
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      (A.2.4) 

Where θ =cone half angle (radians).   These expressions are utilized in the text to estimate the base pressure 

component of the net vehicle drag. 

 

While the current effort is focused on base pressure fluctuation as opposed to mean base pressure the minimal base 

pressure interference offered by the blade mounted sting measurements offers an opportunity to compare the resu lts 

of the mean base pressure models as described by equations (A.2.1) and (A.2.2) to experimental data.   Figure 

(A.2.1) presents these results. 



 

American Institute of Aeronautics and Astronautics 

 

20 

 

(a) Laminar           (b) turbulent 

Figure A.2.1: Comparison between empirical model e.g., Lamb and Oberkamf [21], current theory as equations 

(A.2.1) and (A.2.2) and blade mounted 5-degree cone, Mach=8 Saltzman HWT measurements suggesting 

reasonable agreement. 
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